Advertisement
Review Article|Articles in Press

HFSA Expert Consensus Statement on the Medical Management of Patients on Durable Mechanical Circulatory Support

Published:February 22, 2023DOI:https://doi.org/10.1016/j.cardfail.2023.01.009

      Abstract

      The medical management of patients supported with durable continuous flow left ventricular assist device (LVAD) support encompasses pharmacologic therapies administered in the preoperative, intraoperative, postoperative and chronic LVAD support stages. As patients live longer on LVAD support, the risks of LVAD-related complications and progression of cardiovascular and other diseases increase. Using existing data from cohort studies, registries, randomized trials and expert opinion, this Heart Failure Society of America Consensus Document on the Medical Management of Patients on Durable Mechanical Circulatory Support offers best practices on the management of patients on durable MCS, focusing on pharmacological therapies administered to patients on continuous flow LVADs. While quality data in the LVAD population are few, the utilization of guideline directed heart failure medical therapies (GDMT) and the importance of blood pressure management, right ventricular preload and afterload optimization, and antiplatelet and anticoagulation regimens are discussed. Recommended pharmacologic regimens used to mitigate or treat common complications encountered during LVAD support, including arrhythmias, vasoplegia, mucocutaneous bleeding, and infectious complications are addressed. Finally, this document touches on important potential pharmacological interactions from anti-depressants, herbal and nutritional supplements of relevance to providers of patients on LVAD support.

      Graphical Abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mehra MR
        • Goldstein DJ
        • Cleveland JC
        • Cowger JA
        • Hall S
        • Salerno CT
        • Naka Y
        • Horstmanshof D
        • Chuang J
        Wang A, Uriel N.JAMA. 2022 Sep 27; 328: 1233-1242https://doi.org/10.1001/jama.2022.16197
        • Pagani FD
        • Mehra MR
        • Cowger JA
        • et al.
        Clinical outcomes and healthcare expenditures in the real world with left ventricular assist devices - The CLEAR-LVAD study.
        J Heart Lung Transplant. 2021; 40: 323-333
        • Pagani FD
        • Cantor R
        • Cowger J
        • et al.
        Concordance of Treatment Effect: An Analysis of The Society of Thoracic Surgeons Intermacs Database.
        Ann Thorac Surg. 2021;
        • Shah P
        • Yuzefpolskaya M
        • Hickey GW
        • et al.
        Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: Readmissions After Left Ventricular Assist Device.
        Ann Thorac Surg. 2022; 113: 722-737
        • Writing C
        • Maddox TM
        • Januzzi Jr., JL
        • et al.
        Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee.
        J Am Coll Cardiol. 2021; 77 (2021): 772-810
        • Heidenreich PA
        • Bozkurt B
        • Aguilar D
        • et al.
        AHA/ACC/HFSA Guideline for the Management of Heart Failure.
        J Card Fail. 2022; https://doi.org/10.1016/j.cardfail.2022.02.010
        • Cowger JA
        • Shah P
        • Pagani FD
        • et al.
        Outcomes based on blood pressure in patients on continuous flow left ventricular assist device support: An Interagency Registry for Mechanically Assisted Circulatory Support analysis.
        J Heart Lung Transplant. 2019;
        • Milano CA
        • Rogers JG
        • Tatooles AJ
        • et al.
        HVAD: The ENDURANCE Supplemental Trial.
        JACC Heart Fail. 2018; 6: 792-802
        • Teuteberg JJ
        • Slaughter MS
        • Rogers JG
        • et al.
        The HVAD Left Ventricular Assist Device: Risk Factors for Neurological Events and Risk Mitigation Strategies.
        JACC Heart Fail. 2015; 3: 818-828
        • Feldman D
        • Pamboukian SV
        • Teuteberg JJ
        • et al.
        The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary.
        J Heart Lung Transplant. 2013; 32: 157-187
        • Gupta S
        • Cogswell RJ
        • Roy SS
        • et al.
        Impact of 30 Day Readmission After Left Ventricular Assist Device Implantation.
        ASAIO J. 2019; 65: 252-256
        • Molina EJ
        • Shah P
        • Kiernan MS
        • et al.
        The Society of Thoracic Surgeons Intermacs 2020 Annual Report.
        Ann Thorac Surg. 2021; 111: 778-792
        • Uriel N
        • Sayer G
        • Addetia K
        • et al.
        Hemodynamic Ramp Tests in Patients With Left Ventricular Assist Devices.
        JACC Heart Fail. 2016; 4: 208-217
        • Shah P
        • Badoe N
        • Phillips S
        • et al.
        Unrecognized Left Heart Failure in LVAD Recipients: The Role of Routine Invasive Hemodynamic Testing.
        ASAIO J. 2018; 64: 183-190
        • Shah P
        • Psotka M
        • Taleb I
        • et al.
        Framework to Classify Reverse Cardiac Remodeling With Mechanical Circulatory Support: The Utah-Inova Stages.
        Circ Heart Fail. 2021; 14e007991
        • Kassis H
        • Cherukuri K
        • Agarwal R
        • et al.
        Significance of Residual Mitral Regurgitation After Continuous Flow Left Ventricular Assist Device Implantation.
        JACC Heart Fail. 2017; 5: 81-88
        • Lampert BC
        • Teuteberg JJ.
        Right ventricular failure after left ventricular assist devices.
        J Heart Lung Transplant. 2015; 34: 1123-1130
        • Cowger JA
        • Grafton G
        • Shah P.
        Avoiding the "set it and forget it mentality": A need to regularly reassess left ventricular assist device patients for optimal support.
        J Thorac Cardiovasc Surg. 2020; 159: 1322-1325
        • McCullough M
        • Caraballo C
        • Ravindra NG
        • et al.
        Neurohormonal Blockade and Clinical Outcomes in Patients With Heart Failure Supported by Left Ventricular Assist Devices.
        JAMA Cardiol. 2020; 5: 175-182
        • Birks EJ
        • Drakos SG
        • Patel SR
        • et al.
        Prospective Multicenter Study of Myocardial Recovery Using Left Ventricular Assist Devices (RESTAGE-HF [Remission from Stage D Heart Failure]): Medium-Term and Primary End Point Results.
        Circulation. 2020; 142: 2016-2028
        • Stainback RF
        • Estep JD
        • Agler DA
        • et al.
        Echocardiography in the Management of Patients with Left Ventricular Assist Devices: Recommendations from the American Society of Echocardiography.
        J Am Soc Echocardiogr. 2015; 28: 853-909
        • Tang PC
        • Pagani FD.
        Continuous-Flow Device Engineering and Pump Technology.
        Cardiol Clin. 2018; 36: 451-463
        • Cowger JA
        • Estep JD
        • Rinde-Hoffman DA
        • et al.
        Variability in Blood Pressure Assessment in Patients Supported with the HeartMate 3TM.
        ASAIO J. 2021;
        • Saeed O
        • Jermyn R
        • Kargoli F
        • et al.
        Blood pressure and adverse events during continuous flow left ventricular assist device support.
        Circ Heart Fail. 2015; 8: 551-556
        • Nassif ME
        • Tibrewala A
        • Raymer DS
        • et al.
        Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke.
        J Heart Lung Transplant. 2015; 34: 503-508
        • Colombo PC
        • Mehra MR
        • Goldstein DJ
        • et al.
        Comprehensive Analysis of Stroke in the Long-Term Cohort of the MOMENTUM 3 Study.
        Circulation. 2019; 139: 155-168
        • Cowger JA
        • Shah P
        • Pagani FD
        • et al.
        Outcomes based on blood pressure in patients on continuous flow left ventricular assist device support: An Interagency Registry for Mechanically Assisted Circulatory Support analysis.
        J Heart Lung Transplant. 2020; 39: 441-453
        • Bourque K
        • Fraser CE
        • Lorts A
        • et al.
        Special Considerations for Durable Left Ventricular Assist Device Use in Small Patients.
        ASAIO J. 2022; 68: 619-622
        • Schnettler JK
        • Roehrich L
        • Just IA
        • et al.
        Safety of Contemporary Heart Failure Therapy in Patients with Continuous-Flow Left Ventricular Assist Devices.
        J Card Fail. 2021;
        • Goldberg RL
        • Freed KE
        • Klemans N
        • et al.
        Angiotensin Receptor-Neprilysin Inhibition Improves Blood Pressure and Heart Failure Control in Left Ventricular Assist Device Patients.
        ASAIO J. 2021; 67: e207-e210
        • Alishetti S
        • Braghieri L
        • Jennings DL
        • Uriel N
        • Colombo PC
        • Yuzefpolskaya M.
        Angiotensin receptor neprilysin inhibitor use in patients with left ventricular assist devices: A single-center experience.
        Int J Artif Organs. 2022; 45: 118-120
        • Januzzi Jr., JL
        • Prescott MF
        • Butler J
        • et al.
        Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction.
        JAMA. 2019; 322: 1085-1095
        • Mann DL
        • Givertz MM
        • Vader JM
        • et al.
        Effect of Treatment With Sacubitril/Valsartan in Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.
        JAMA Cardiol. 2022; 7: 17-25
        • Kanwar MK
        • Selzman CH
        • Ton VK
        • et al.
        Clinical myocardial recovery in advanced heart failure with long term left ventricular assist device support.
        J Heart Lung Transplant. 2022;
        • Kormos RL
        • Cowger J
        • Pagani FD
        • et al.
        The Society of Thoracic Surgeons Intermacs Database Annual Report: Evolving Indications, Outcomes, and Scientific Partnerships.
        Ann Thorac Surg. 2019; 107: 341-353
        • Kiernan MS
        • Grandin EW
        • Brinkley Jr., M
        • et al.
        Early Right Ventricular Assist Device Use in Patients Undergoing Continuous-Flow Left Ventricular Assist Device Implantation: Incidence and Risk Factors From the Interagency Registry for Mechanically Assisted Circulatory Support.
        Circ Heart Fail. 2017; 10
        • Rich JD
        • Gosev I
        • Patel CB
        • et al.
        The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. The Journal of heart and lung transplantation: the official publication of the International Society for.
        Heart Transplantation. 2017; 36: 50-58
        • Ton VK
        • Ramani G
        • Hsu S
        • et al.
        High Right Ventricular Afterload Is Associated with Impaired Exercise Tolerance in Patients with Left Ventricular Assist Devices.
        ASAIO J. 2021; 67: 39-45
        • Rame JE
        • Pagani FD
        • Kiernan MS
        • et al.
        Evolution of Late Right Heart Failure With Left Ventricular Assist Devices and Association With Outcomes.
        J Am Coll Cardiol. 2021; 78: 2294-2308
        • Hariri IM
        • Dardas T
        • Kanwar M
        • et al.
        Long-term survival on LVAD support: Device complications and end-organ dysfunction limit long-term success.
        J Heart Lung Transplant. 2022; 41: 161-170
        • Kormos RL
        • Antonides CFJ
        • Goldstein DJ
        • et al.
        Updated definitions of adverse events for trials and registries of mechanical circulatory support: A consensus statement of the mechanical circulatory support academic research consortium.
        J Heart Lung Transplant. 2020; 39: 735-750
      1. STS-INTERMACS. Adverse event definition. 2016.

        • Ventetuolo CE
        • Klinger JR.
        Management of acute right ventricular failure in the intensive care unit.
        Annals of the American Thoracic Society. 2014; 11: 811-822
        • Buckberg G
        • Hoffman JI.
        Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum.
        J Thorac Cardiovasc Surg. 2014; 148 (e1-4): 3166-3171
        • Buckberg G
        • Hoffman JI.
        Effect of right ventricular free wall ventriculotomy on right ventricular function: is that the correct question?.
        J Thorac Cardiovasc Surg. 2014; 148: 752-753
        • Addetia K
        • Uriel N
        • Maffessanti F
        • et al.
        3D Morphological Changes in LV and RV During LVAD Ramp Studies.
        JACC Cardiovasc Imaging. 2018; 11: 159-169
        • Sparrow CT
        • LaRue SJ
        • Schilling JD.
        Intersection of Pulmonary Hypertension and Right Ventricular Dysfunction in Patients on Left Ventricular Assist Device Support: Is There a Role for Pulmonary Vasodilators?.
        Circulation Heart failure. 2018; 11e004255
        • Guazzi M
        • Ghio S
        • Adir Y.
        Pulmonary Hypertension in HFpEF and HFrEF: JACC Review Topic of the Week.
        Journal of the American College of Cardiology. 2020; 76: 1102-1111
        • Ali HR
        • Kiernan MS
        • Choudhary G
        • et al.
        Right Ventricular Failure Post-Implantation of Left Ventricular Assist Device: Prevalence, Pathophysiology, and Predictors.
        ASAIO J. 2020; 66: 610-619
        • Gulati G
        • Ruthazer R
        • Denofrio D
        • Vest AR
        • Kent D
        • Kiernan MS.
        Understanding Longitudinal Changes in Pulmonary Vascular Resistance After Left Ventricular Assist Device Implantation.
        Journal of cardiac failure. 2021; 27: 552-559
        • Kittipibul V
        • Blumer V
        • Angsubhakorn N
        • et al.
        Phosphodiesterase-5 Inhibitors and Outcomes During Left Ventricular Assist Device Support: A Systematic Review and Meta-Analysis.
        J Card Fail. 2021; 27: 477-485
        • Grandin EW
        • Gulati G
        • Nunez JI
        • et al.
        Outcomes With Phosphodiesterase-5 Inhibitor Use After Left Ventricular Assist Device: An STS-INTERMACS Analysis.
        Circ Heart Fail. 2022; 15e008613
        • Rosenbaum AN
        • Clavell AL
        • Stulak JM
        Behfar A. Correction of High Afterload Improves Low Cardiac Output in Patients Supported on Left Ventricular Assist Device Therapy.
        ASAIO J. 2021; 67: 32-38
        • de Waal EEC
        • van Zaane B
        • van der Schoot MM
        • et al.
        Vasoplegia after implantation of a continuous flow left ventricular assist device: incidence, outcomes and predictors.
        BMC Anesthesiol. 2018; 18: 185
        • Han J
        • Pinsino A
        • Sanchez J
        • et al.
        Prognostic value of vasoactive-inotropic score following continuous flow left ventricular assist device implantation.
        J Heart Lung Transplant. 2019; 38: 930-938
        • Tecson KM
        • Lima B
        • Lee AY
        • et al.
        Determinants and Outcomes of Vasoplegia Following Left Ventricular Assist Device Implantation.
        Journal of the American Heart Association. 2018; 7
        • Swan JT
        • Iso T
        • Rizk E
        • et al.
        Defining Vasoplegia Following Durable, Continuous Flow Left Ventricular Assist Device Implantation.
        ASAIO J. 2021;
        • Busse LW
        • Barker N
        • Petersen C.
        Vasoplegic syndrome following cardiothoracic surgery-review of pathophysiology and update of treatment options.
        Crit Care. 2020; 24: 36
        • Tang PC
        • Haft JW
        • Romano MA
        • et al.
        Right ventricular failure following left ventricular assist device implantation is associated with a preoperative pro-inflammatory response.
        J Cardiothorac Surg. 2019; 14: 80
        • Kopitko C
        • Gondos T
        • Fulop T
        • Medve L.
        Reinterpreting Renal Hemodynamics: The Importance of Venous Congestion and Effective Organ Perfusion in Acute Kidney Injury.
        Am J Med Sci. 2020; 359: 193-205
        • Ginimuge PR
        • Jyothi SD.
        Methylene blue: revisited.
        J Anaesthesiol Clin Pharmacol. 2010; 26: 517-520
        • Evora PR
        • Levin RL.
        Methylene blue as drug of choice for catecholamine-refractory vasoplegia after cardiopulmonary bypass.
        J Thorac Cardiovasc Surg. 2004; 127 (895-6; author reply): 896
        • Kofidis T
        • Struber M
        • Wilhelmi M
        • et al.
        Reversal of severe vasoplegia with single-dose methylene blue after heart transplantation.
        J Thorac Cardiovasc Surg. 2001; 122: 823-824
        • Leyh RG
        • Kofidis T
        • Struber M
        • et al.
        Methylene blue: the drug of choice for catecholamine-refractory vasoplegia after cardiopulmonary bypass?.
        J Thorac Cardiovasc Surg. 2003; 125: 1426-1431
        • Saha A
        • Jennings DL
        • Ning Y
        • et al.
        Methylene Blue Does Not Improve Vasoplegia After Left Ventricular Assist Device Implantation.
        Ann Thorac Surg. 2021; 111: 800-808
        • Peyko V
        • Finamore M.
        Use of Intravenous Hydroxocobalamin without Methylene Blue for Refractory Vasoplegic Syndrome After Cardiopulmonary Bypass.
        Am J Case Rep. 2021; 22e930890
        • Sacco AJ
        • Cunningham CA
        • Kosiorek HE
        • Sen A.
        Hydroxocobalamin in Refractory Septic Shock: A Retrospective Case Series.
        Crit Care Explor. 2021; 3: e0408
        • Ayers B
        • Wood K
        • Falvey J
        • Bernstein W
        • Gosev I.
        The use of hydroxocobalamin for vasoplegic syndrome in left ventricular assist device patients.
        Clin Case Rep. 2020; 8: 1722-1727
        • Yanase F
        • Bitker L
        • Hessels L
        • et al.
        A Pilot, Double-Blind, Randomized, Controlled Trial of High-Dose Intravenous Vitamin C for Vasoplegia After Cardiac Surgery.
        J Cardiothorac Vasc Anesth. 2020; 34: 409-416
        • A G-J
        • SS R
        • K M
        • et al.
        Management of Stroke in Patients with Left Ventricular Assist Devices.
        Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association. 2020; 29
        • Angeli F
        • Verdecchia P
        • et al.
        • Departments of Cardiovascular Disease and Internal Medicine HRS, Perugia, Italy
        Calcium channel blockade to prevent stroke in hypertensionA meta-analysis of 13 studies with 103,793 subjects.
        American Journal of Hypertension. 2021; 17: 817-822
      2. HeartMate II Left Ventricular Assist Device Instructions for Use. 2023

      3. HeartMate 3 Instructions for Use. 2023

      4. HVAD Instructions for Use. 2023

        • Maltais S
        • Anwer LA
        • Tchantchaleishvili V
        • et al.
        Left Lateral Thoracotomy for Centrifugal Continuous-Flow Left Ventricular Assist Device Placement: An Analysis from the Mechanical Circulatory Support Research Network.
        Asaio j. 2017;
        • Kantorovich A
        • Fink JM
        • Militello MA
        • Bauer SR
        • Soltesz EG
        • Moazami N.
        Comparison of Anticoagulation Strategies After Left Ventricular Assist Device Implantation.
        ASAIO J. 2016; 62: 123-127
        • Pieri M
        • Agracheva N
        • Di Prima AL
        • et al.
        Primary anticoagulation with bivalirudin for patients with implantable ventricular assist devices.
        Artificial organs. 2014; 38: 342-346
        • McIlvennan CK
        • Page 2nd, RL
        • Ambardekar AV
        • Brieke A
        • Lindenfeld J.
        Activated partial thromboplastin time overestimates anti-coagulation in left ventricular assist device patients.
        J Heart Lung Transplant. 2014; 33: 1312-1314
        • Adatya S
        • Uriel N
        • Yarmohammadi H
        • et al.
        Anti-factor Xa and activated partial thromboplastin time measurements for heparin monitoring in mechanical circulatory support.
        JACC Heart Fail. 2015; 3: 314-322
        • Nassif ME
        • LaRue SJ
        • Raymer DS
        • et al.
        Relationship Between Anticoagulation Intensity and Thrombotic or Bleeding Outcomes Among Outpatients With Continuous-Flow Left Ventricular Assist Devices.
        Circ Heart Fail. 2016; 9
        • Boehme AK
        • Pamboukian SV
        • George JF
        • et al.
        Anticoagulation Control in Patients With Ventricular Assist Devices.
        ASAIO J. 2017; 63: 759-765
        • Lea JC
        • Floroff CK
        • Ingemi AI
        • Zeevi GR.
        Impact of time in therapeutic range after left ventricular assist device placement: a comparison between thrombus and thrombus-free periods.
        Journal of thrombosis and thrombolysis. 2019; 47: 361-368
        • Henderson JB
        • Iyer P
        • Coniglio AC
        • Katz JN
        • Chien C
        • Hollis IB.
        Predictors of Warfarin Time in Therapeutic Range after Continuous-Flow Left Ventricular Assist Device.
        Pharmacotherapy. 2019; 39: 1030-1035
        • Martinez BK
        • Yik B
        • Tran R
        • et al.
        Meta-Analysis of Time in Therapeutic Range in Continuous-Flow Left Ventricular Assist Device Patients Receiving Warfarin.
        Artificial organs. 2018; 42: 700-704
        • Meredith T
        • Schnegg B
        • Hayward C.
        The use of direct oral anticoagulants in patients with ventricular assist devices: Is there hope for Factor Xa inhibition?.
        Artificial organs. 2021; 45: E123-E129
        • Parikh VY
        • Parikh UM
        • Moctezuma-Ramirez A
        • et al.
        Factor Xa inhibitors in patients with continuous-flow left ventricular assist devices.
        Gen Thorac Cardiovasc Surg. 2020; 68: 1278-1284
        • Pollari F
        • Fischlein T
        • Fittkau M
        • Santarpino G.
        Anticoagulation with apixaban in a patient with a left ventricular assist device and gastrointestinal bleeding: A viable alternative to warfarin?.
        J Thorac Cardiovasc Surg. 2016; 151: e79-e81
        • Andreas M
        • Moayedifar R
        • Wieselthaler G
        • et al.
        Increased Thromboembolic Events With Dabigatran Compared With Vitamin K Antagonism in Left Ventricular Assist Device Patients: A Randomized Controlled Pilot Trial.
        Circ Heart Fail. 2017; 10
        • Bhatia A
        • Juricek C
        • Sarswat N
        • et al.
        Increased Risk of Bleeding in Left Ventricular Assist Device Patients Treated with Enoxaparin as Bridge to Therapeutic International Normalized Ratio.
        ASAIO J. 2018; 64: 140-146
        • Shah Z
        • Mastoris I
        • Acharya P
        • et al.
        The use of enoxaparin as bridge to therapeutic INR after LVAD implantation.
        J Cardiothorac Surg. 2020; 15: 329
        • Netuka I
        • Ivak P
        • Tucanova Z
        • et al.
        Evaluation of low-intensity anti-coagulation with a fully magnetically levitated centrifugal-flow circulatory pump-the MAGENTUM 1 study.
        J Heart Lung Transplant. 2018; 37: 579-586
        • Bishop MA
        • Streiff MB
        • Ensor CR
        • Tedford RJ
        • Russell SD
        • Ross PA.
        Pharmacist-managed international normalized ratio patient self-testing is associated with increased time in therapeutic range in patients with left ventricular assist devices at an academic medical center.
        ASAIO J. 2014; 60: 193-198
        • Kuyumjian YM
        • Miyares MA
        • Leverock J
        • Chaparro S
        • Baker WL
        • Jennings DL.
        A multidisciplinary team-based process improves outpatient anticoagulation quality with continuous-flow left-ventricular assist devices.
        International journal of cardiology. 2016; 218: 118-119
        • Editors Kirklin JK
        • Pagani FD
        • et al.
        American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support.
        J Heart Lung Transplant. 2020; 39: 187-219
        • Milano C
        • Pagani FD
        • Slaughter MS
        • et al.
        Clinical outcomes after implantation of a centrifugal flow left ventricular assist device and concurrent cardiac valve procedures.
        Circulation. 2014; 130: S3-11
        • Najjar SS
        • Slaughter MS
        • Pagani FD
        • et al.
        An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial.
        J Heart Lung Transplant. 2014; 33: 23-34
        • Saeed O
        • Colombo PC
        • Mehra MR
        • et al.
        Effect of aspirin dose on hemocompatibility-related outcomes with a magnetically levitated left ventricular assist device: An analysis from the MOMENTUM 3 study.
        J Heart Lung Transplant. 2020; 39: 518-525
      5. The ARIES HeartMate 3 Pump IDE Study.

        • Cornwell 3rd, WK
        • Ambardekar AV
        • Tran T
        • et al.
        Stroke Incidence and Impact of Continuous-Flow Left Ventricular Assist Devices on Cerebrovascular Physiology.
        Stroke. 2019; 50: 542-548
        • Boden-Albala B
        • Quarles LW.
        Education strategies for stroke prevention.
        Stroke. 2013; 44: S48-S51
        • Potapov EV
        • Antonides C
        • Crespo-Leiro MG
        • et al.
        2019 EACTS Expert Consensus on long-term mechanical circulatory support.
        Eur J Cardiothorac Surg. 2019; 56: 230-270
        • Loyaga-Rendon RY
        • Kazui T
        • Acharya D.
        Antiplatelet and anticoagulation strategies for left ventricular assist devices.
        Ann Transl Med. 2021; 9: 521
        • Cho SM
        • Moazami N
        • Katz S
        • Starling R
        • Frontera JA.
        Reversal and Resumption of Antithrombotic Therapy in LVAD-Associated Intracranial Hemorrhage.
        Ann Thorac Surg. 2019; 108: 52-58
        • Gopinathannair R
        • Cornwell WK
        • Dukes JW
        • et al.
        Device Therapy and Arrhythmia Management in Left Ventricular Assist Device Recipients: A Scientific Statement From the American Heart Association.
        Circulation. 2019; 139: e967-e989
        • January CT
        • Wann LS
        • Calkins H
        • et al.
        2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society.
        Journal of the American College of Cardiology. 2019; 74: 104-132
        • Al-Khatib SM
        • Stevenson WG
        • Ackerman MJ
        • et al.
        2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society.
        Heart rhythm. 2018; 15: e190-e252
        • Ozcan C
        • Deshmukh A.
        Atrial arrhythmias in patients with left ventricular assist devices.
        Curr Opin Cardiol. 2020; 35: 276-281
        • Deshmukh A
        • Kim G
        • Burke M
        • et al.
        Atrial Arrhythmias and Electroanatomical Remodeling in Patients With Left Ventricular Assist Devices.
        Journal of the American Heart Association. 2017; 6
        • Noll AE
        • Adewumi J
        • Amuthan R
        • et al.
        Atrial Tachyarrhythmias Among Patients With Left Ventricular Assist Devices: Prevalence, Clinical Outcomes, and Impact of Rhythm Control Strategies.
        JACC Clinical electrophysiology. 2019; 5: 459-466
        • Tung R
        • Ozcan C.
        Atrial Arrhythmias in Patients With Left Ventricular Assist Devices: To Treat or Not to Treat?.
        JACC Clinical electrophysiology. 2019; 5: 467-469
        • Hottigoudar RU
        • Deam AG
        • Birks EJ
        • McCants KC
        • Slaughter MS
        • Gopinathannair R.
        Catheter ablation of atrial flutter in patients with left ventricular assist device improves symptoms of right heart failure.
        Congestive heart failure (Greenwich, Conn). 2013; 19: 165-171
        • Rehorn MR
        • Black-Maier E
        • Loungani R
        • et al.
        Electrical storm in patients with left ventricular assist devices: Risk factors, incidence, and impact on survival.
        Heart rhythm. 2021;
        • Maradey JA
        • Singleton MJ
        • O'Neill TJ
        • Bhave PD.
        Management of ventricular arrhythmias in patients with LVAD.
        Current opinion in cardiology. 2020; 35: 289-294
        • Peberdy MA
        • Gluck JA
        • Ornato JP
        • et al.
        Cardiopulmonary Resuscitation in Adults and Children With Mechanical Circulatory Support: A Scientific Statement From the American Heart Association.
        Circulation. 2017; 135: e1115-e1134
        • Alvarez PA
        • Sperry BW
        • Perez AL
        • et al.
        Implantable Cardioverter Defibrillators in Patients With Continuous Flow Left Ventricular Assist Devices: Utilization Patterns, Related Procedures, and Complications.
        Journal of the American Heart Association. 2019; 8e011813
        • Clerkin KJ
        • Topkara VK
        • Demmer RT
        • et al.
        Implantable Cardioverter-Defibrillators in Patients With a Continuous-Flow Left Ventricular Assist Device: An Analysis of the INTERMACS Registry.
        JACC Heart Fail. 2017; 5: 916-926
        • Draper KV
        • Huang RJ
        • Gerson LB.
        GI bleeding in patients with continuous-flow left ventricular assist devices: a systematic review and meta-analysis.
        Gastrointest Endosc. 2014; 80 (e1): 435-446
        • Marshall D
        • Sanchez J
        • Yuzefpolskaya M
        • et al.
        Safety of reduced anti-thrombotic strategy in patients with HeartMate 3 left ventricular assist device.
        J Heart Lung Transplant. 2021; 40: 237-240
        • Molina TL
        • Krisl JC
        • Donahue KR
        • Varnado S.
        Gastrointestinal Bleeding in Left Ventricular Assist Device: Octreotide and Other Treatment Modalities.
        ASAIO J. 2018; 64: 433-439
        • Axelrad JE
        • Pinsino A
        • Trinh PN
        • et al.
        Limited usefulness of endoscopic evaluation in patients with continuous-flow left ventricular assist devices and gastrointestinal bleeding.
        J Heart Lung Transplant. 2018; 37: 723-732
        • Goldstein DJ
        • Aaronson KD
        • Tatooles AJ
        • et al.
        Gastrointestinal bleeding in recipients of the HeartWare Ventricular Assist System.
        JACC Heart Fail. 2015; 3: 303-313
        • Kataria R
        • Jorde UP.
        Gastrointestinal Bleeding During Continuous-Flow Left Ventricular Assist Device Support: State of the Field.
        Cardiol Rev. 2019; 27: 8-13
        • Kittipibul V
        • Vutthikraivit W
        • Kewcharoen J
        • et al.
        Angiotensin II antagonists and gastrointestinal bleeding in left ventricular assist devices: A systematic review and meta-analysis.
        Int J Artif Organs. 2021; 44: 215-220
        • Li F
        • Hinton A
        • Chen A
        • et al.
        Left Ventricular Assist Devices Impact Hospital Resource Utilization Without Affecting Patient Mortality in Gastrointestinal Bleeding.
        Dig Dis Sci. 2017; 62: 150-160
        • Jennings DL
        • Truby LK
        • Littlefield AJ
        • et al.
        Impact of heart failure drug therapy on rates of gastrointestinal bleeding in LVAD recipients: An INTERMACS analysis.
        Int J Artif Organs. 2021; 3913988211013366
        • Visconti RP
        • Richardson CD
        • Sato TN.
        Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF).
        Proc Natl Acad Sci U S A. 2002; 99: 8219-8224
        • Littlefield AJ
        • Jones G
        • Ciolek AM
        • Yuzefpolskaya M
        • Jennings DL.
        A reappraisal of the pharmacologic management of gastrointestinal bleeding in patients with continuous flow left ventricular assist devices.
        Heart failure reviews. 2021; 26: 277-288
        • von Haehling S
        • Ebner N
        • Evertz R
        • Ponikowski P
        • Anker SD.
        Iron Deficiency in Heart Failure: An Overview.
        JACC Heart Fail. 2019; 7: 36-46
        • Katz JN
        • Adamson RM
        • John R
        • et al.
        Safety of reduced anti-thrombotic strategies in HeartMate II patients: A one-year analysis of the US-TRACE Study.
        J Heart Lung Transplant. 2015; 34: 1542-1548
        • Netuka I
        • Litzler PY
        • Berchtold-Herz M
        • et al.
        Outcomes in HeartMate II Patients With No Antiplatelet Therapy: 2-Year Results From the European TRACE Study.
        Ann Thorac Surg. 2017; 103: 1262-1268
        • Brown C
        • Subramanian V
        • Wilcox CM
        • Peter S.
        Somatostatin analogues in the treatment of recurrent bleeding from gastrointestinal vascular malformations: an overview and systematic review of prospective observational studies.
        Dig Dis Sci. 2010; 55: 2129-2134
        • Juricek C
        • Imamura T
        • Nguyen A
        • et al.
        Long-Acting Octreotide Reduces the Recurrence of Gastrointestinal Bleeding in Patients With a Continuous-Flow Left Ventricular Assist Device.
        J Card Fail. 2018; 24: 249-254
        • Aggarwal A
        • Pant R
        • Kumar S
        • et al.
        Incidence and management of gastrointestinal bleeding with continuous flow assist devices.
        Ann Thorac Surg. 2012; 93: 1534-1540
        • Malhotra R
        • Shah KB
        • Chawla R
        • et al.
        Tolerability and Biological Effects of Long-Acting Octreotide in Patients With Continuous Flow Left Ventricular Assist Devices.
        ASAIO J. 2017; 63: 367-370
        • Sieg AC
        • Moretz JD
        • Horn E
        • Jennings DL.
        Pharmacotherapeutic Management of Gastrointestinal Bleeding in Patients with Continuous-Flow Left Ventricular Assist Devices.
        Pharmacotherapy. 2017; 37: 1432-1448
        • Zhang H
        • Qian DZ
        • Tan YS
        • et al.
        Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth.
        Proc Natl Acad Sci U S A. 2008; 105: 19579-19586
        • El Rafei A
        • Trachtenberg BH
        • Schultz J
        • et al.
        Association between digoxin use and gastrointestinal bleeding in contemporary continuous flow left ventricular assist device support.
        J Heart Lung Transplant. 2021; 40: 671-676
        • Ge ZZ
        • Chen HM
        • Gao YJ
        • et al.
        Efficacy of thalidomide for refractory gastrointestinal bleeding from vascular malformation.
        Gastroenterology. 2011; 141 (e1-4): 1629-1637
        • Namdaran P
        • Zikos TA
        • Pan JY
        • Banerjee D.
        Thalidomide Use Reduces Risk of Refractory Gastrointestinal Bleeding in Patients with Continuous Flow Left Ventricular Assist Devices.
        ASAIO J. 2020; 66: 645-651
        • Imamura T
        • Nguyen A
        • Rodgers D
        • et al.
        Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device.
        Circ Heart Fail. 2018; 11e005082
        • Bartoli CR
        • Kang J
        • Restle DJ
        • et al.
        Inhibition of ADAMTS-13 by Doxycycline Reduces von Willebrand Factor Degradation During Supraphysiological Shear Stress: Therapeutic Implications for Left Ventricular Assist Device-Associated Bleeding.
        JACC Heart Fail. 2015; 3: 860-869
        • Asleh R
        • Albitar HAH
        • Schettle SD
        • et al.
        Intravenous bevacizumab as a novel treatment for refractory left ventricular assist device-related gastrointestinal bleeding.
        J Heart Lung Transplant. 2020; 39: 492-495
        • Jiang HY
        • Chen HZ
        • Hu XJ
        • et al.
        Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding: a systematic review and meta-analysis.
        Clin Gastroenterol Hepatol. 2015; 13 (e3): 42-50
        • Schultz J
        • Bream-Rouwenhorst H
        • Hobbs R
        • McDanel D
        • Goerbig-Campbell J.
        Serotonergic agents increase the incidence of gastrointestinal bleeds in patients with continuous-flow left ventricular assist devices.
        J Heart Lung Transplant. 2016; 35: 823-824
        • Shah P
        • Birk SE
        • Cooper LB
        • et al.
        Stroke and death risk in ventricular assist device patients varies by ISHLT infection category: An INTERMACS analysis.
        J Heart Lung Transplant. 2019;
        • Trachtenberg BH
        • Cordero-Reyes AM
        • Aldeiri M
        • et al.
        Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents.
        J Card Fail. 2015; 21: 119-125
        • Tattevin P
        • Flecher E
        • Auffret V
        • et al.
        Risk factors and prognostic impact of left ventricular assist device-associated infections.
        Am Heart J. 2019; 214: 69-76
        • Hannan MM
        • Xie R
        • Cowger J
        • et al.
        Epidemiology of infection in mechanical circulatory support: A global analysis from the ISHLT Mechanically Assisted Circulatory Support Registry.
        J Heart Lung Transplant. 2019; 38: 364-373
        • Kusne S
        • Mooney M
        • Danziger-Isakov L
        • et al.
        An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection.
        J Heart Lung Transplant. 2017; 36: 1137-1153
        • Jennings DL
        • Chopra A
        • Chambers R
        • Morgan JA.
        Clinical outcomes associated with chronic antimicrobial suppression therapy in patients with continuous-flow left ventricular assist devices.
        Artificial organs. 2014; 38: 875-879
        • Aburjania N
        • Hay CM
        • Sohail MR.
        Continuous-flow left ventricular assist device systems infections: current outcomes and management strategies.
        Ann Cardiothorac Surg. 2021; 10: 233-239
        • Bui QM
        • Allen LA
        • LeMond L
        • Brambatti M
        • Adler E.
        Psychosocial Evaluation of Candidates for Heart Transplant and Ventricular Assist Devices: Beyond the Current Consensus.
        Circ Heart Fail. 2019; 12e006058
        • DeFilippis EM
        • Breathett K
        • Donald EM
        • et al.
        Psychosocial Risk and Its Association With Outcomes in Continuous-Flow Left Ventricular Assist Device Patients.
        Circ Heart Fail. 2020; 13e006910
        • Snipelisky D
        • Stulak JM
        • Schettle SD
        • Sharma S
        • Kushwaha SS
        • Dunlay SM.
        Psychosocial characteristics and outcomes in patients with left ventricular assist device implanted as destination therapy.
        Am Heart J. 2015; 170: 887-894
        • Charton M
        • Flecher E
        • Leclercq C
        • et al.
        Suicide Attempts Among LVAD Recipients: Real-Life Data From the ASSIST-ICD Study.
        Circulation. 2020; 141: 934-936
        • Casida JM
        • Abshire M
        • Ghosh B
        • Yang JJ.
        The Relationship of Anxiety, Depression, and Quality of Life in Adults With Left Ventricular Assist Devices.
        ASAIO J. 2018; 64: 515-520
        • Lundgren S
        • Lowes BD
        • Zolty R
        • et al.
        Do Psychosocial Factors Have Any Impact on Outcomes After Left Ventricular Assist Device Implantation?.
        ASAIO J. 2018; 64: e43-e47
        • Lundgren S
        • Poon CYM
        • Selim A
        • et al.
        Depression and anxiety in patients undergoing left ventricular assist device implantation.
        Int J Artif Organs. 2017; (0)
        • Mullan C
        • Caraballo C
        • Ravindra NG
        • et al.
        Psychiatric Comorbidity and Outcomes After Left Ventricular Assist Device Implantation for End-Stage Heart Failure.
        JACC Heart Fail. 2020; 8: 569-577
        • Bidwell JT
        • Lyons KS
        • Mudd JO
        • et al.
        Quality of Life, Depression, and Anxiety in Ventricular Assist Device Therapy: Longitudinal Outcomes for Patients and Family Caregivers.
        J Cardiovasc Nurs. 2017; 32: 455-463
        • Lee CS
        • Gelow JM
        • Chien CV
        • et al.
        Implant Strategy-Specific Changes in Symptoms in Response to Left Ventricular Assist Devices.
        J Cardiovasc Nurs. 2018; 33: 144-151
        • Yost G
        • Bhat G
        • Mahoney E
        • Tatooles A.
        Reduced Anxiety and Depression in Patients With Advanced Heart Failure After Left Ventricular Assist Device Implantation.
        Psychosomatics. 2017; 58: 406-414
        • Brouwers C
        • Caliskan K
        • de Jonge N
        • et al.
        A comparison of the health status and psychological distress of partners of patients with a left ventricular assist device versus an implantable cardioverter defibrillator: a preliminary study.
        Heart Lung. 2015; 44: 27-32
        • Sandau KE
        • Lee CS
        • Faulkner KM
        • et al.
        Health-Related Quality of Life in Patients With a Left Ventricular Assist Device (QOLVAD) Questionnaire: Initial Psychometrics of a New Instrument.
        J Cardiovasc Nurs. 2021; 36: 172-184
        • Ayers B
        • Lee E
        • Wood K
        • et al.
        Patient-Reported Outcomes Measurement Information System (PROMIS) in Left Ventricular Assist Devices.
        Ann Thorac Surg. 2020;
        • Tan NY
        • Sangaralingham LR
        • Schilz SR
        • Dunlay SM.
        Longitudinal Heart Failure Medication Use and Adherence Following Left Ventricular Assist Device Implantation in Privately Insured Patients.
        Journal of the American Heart Association. 2017; 6
        • Casida JM
        • Wu HS
        • Abshire M
        • Ghosh B
        • Yang JJ.
        Cognition and adherence are self-management factors predicting the quality of life of adults living with a left ventricular assist device.
        J Heart Lung Transplant. 2017; 36: 325-330
        • Kirklin JK
        • Naftel DC
        • Myers SL
        • Pagani FD
        • Colombo PC.
        Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis.
        J Heart Lung Transplant. 2020; 39: 782-794
        • Obeid FA
        • Yost G
        • Bhat G
        • Drever E
        • Tatooles A.
        Effect of Vitamin D Level on Clinical Outcomes in Patients Undergoing Left Ventricular Assist Device Implantation.
        Nutr Clin Pract. 2018; 33: 825-830
        • Amione-Guerra J
        • Cruz-Solbes AS
        • Bhimaraj A
        • et al.
        Anemia after continuous-flow left ventricular assist device implantation: characteristics and implications.
        Int J Artif Organs. 2017; 40: 481-488
        • Jennings DL
        • Wagner JL
        • To L
        • et al.
        Epidemiology and outcomes associated with anemia during long-term support with continuous-flow left ventricular assist devices.
        J Card Fail. 2014; 20: 387-391
        • Critsinelis AC
        • Kurihara C
        • Kawabori M
        • Sugiura T
        • Civitello AB
        • Morgan JA.
        Preoperative Prealbumin Level as a Predictor of Outcomes in Patients Who Underwent Left Ventricular Assist Device Implantation.
        Am J Cardiol. 2017; 120: 1998-2002
        • Genev I
        • Yost G
        • Gregory M
        • et al.
        Improved Nutrition Status in Patients With Advanced Heart Failure Implanted With a Left Ventricular Assist Device.
        Nutr Clin Pract. 2019; 34: 444-449