Advertisement

Hemodynamics for the Heart Failure Clinician: A State-of-the-Art Review

      Highlights

      • This article reviews the role of invasive hemodynamics in the care of patients across the entire spectrum of human heart failure.
      • Conceptual principles of ventricular function, ventricular-arterial interaction, load response, and ventricular interaction in the right and left heart are reviewed.
      • Principles and practice of invasive exercise testing are provided, along with detailed discussions on the role of invasive hemodynamics in the evaluation and management of advanced heart failure, shock, mechanical circulatory support, and pulmonary hypertension.

      Abstract

      Heart failure (HF) fundamentally reflects an inability of the heart to provide adequate blood flow to the body without incurring the cost of increased cardiac filling pressures. This failure occurs first during the stressed state, but progresses until hemodynamic derangements become apparent at rest. As such, the measurement and interpretation of both resting and stressed hemodynamics serve an integral role in the practice of the HF clinician. In this review, we discuss conceptual and technical best practices in the performance and interpretation of both resting and invasive exercise hemodynamic catheterization, relate important pathophysiologic concepts to clinical care, and discuss updated, evidence-based applications of hemodynamics as they pertain to the full spectrum of HF conditions.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Borlaug BA
        • Nishimura RA
        • Sorajja P
        • Lam CSP
        • Redfield MM.
        Exercise hemodynamics enhance diagnosis of early HFpEF.
        Circ Heart Fail. 2010; 3: 588-595https://doi.org/10.1161/CIRCHEARTFAILURE.109.930701
        • Obokata M
        • Kane GC
        • Reddy YNV
        • Olson TP
        • Melenovsky V
        • Borlaug BA.
        Role of diastolic stress testing in the evaluation for HFpEF: a simultaneous invasive-echocardiographic study.
        Circulation. 2017; 135: 825-838https://doi.org/10.1161/CIRCULATIONAHA.116.024822
        • Borlaug BA
        • Kass DA.
        Invasive hemodynamic assessment in heart failure.
        Heart Fail Clin. 2009; 5: 217-228https://doi.org/10.1016/j.hfc.2008.11.008
        • Schwartzenberg S
        • Redfield MM
        • From AM
        • Sorajja P
        • Nishimura RA
        • Borlaug BA.
        Effects of vasodilation in PH with preserved or reduced ejection fraction.
        J Am Coll Cardiol. 2012; 59: 442-451https://doi.org/10.1016/j.jacc.2011.09.062
        • Burkhoff D
        • Sayer G
        • Doshi D
        • Uriel N.
        Hemodynamics of mechanical circulatory support.
        J Am Coll Cardiol. 2015; 66: 2663-2674https://doi.org/10.1016/j.jacc.2015.10.017
        • Hsu S
        • Kambhampati S
        • Sciortino CM
        • Russell SD
        • Schulman SP.
        Predictors of intra-aortic balloon pump hemodynamic failure in non-acute myocardial infarction cardiogenic shock.
        Am Heart J. 2018; 199: 181-191https://doi.org/10.1016/j.ahj.2017.11.016
        • Borlaug BA
        • Lam CSP
        • Roger VL
        • Rodeheffer RJ
        • Redfield MM.
        Contractility and ventricular systolic stiffening in hypertensive heart disease: insights into the pathogenesis of HFpEF.
        J Am Coll Cardiol. 2009; 54: 410-418https://doi.org/10.1016/j.jacc.2009.05.013
        • Kawaguchi M
        • Hay I
        • Fetics B
        • DA Kass
        Combined ventricular systolic and arterial stiffening in patients with HFpEF: implications for systolic and diastolic reserve limitations.
        Circulation. 2003; 107: 714-720https://doi.org/10.1161/01.cir.0000048123.22359.a0
        • Vonk Noordegraaf A
        • Chin KM
        • Haddad F
        • et al.
        Pathophysiology of the right ventricle and of the pulmonary circulation in PH: an update.
        Eur Respir J. 2019; 531801900https://doi.org/10.1183/13993003.01900-2018
        • Borlaug BA
        • Kane GC
        • Melenovsky V
        • Olson TP.
        Abnormal right ventricular-pulmonary artery coupling with exercise in HFpEF.
        Eur Heart J. 2016; 37: 3293-3302https://doi.org/10.1093/eurheartj/ehw241
        • Hsu S
        • Houston BA
        • Tampakakis E
        • et al.
        Right ventricular functional reserve in pulmonary arterial hypertension.
        Circulation. 2016; 133: 2413-2422https://doi.org/10.1161/CIRCULATIONAHA.116.022082
        • Ireland CG
        • Damico RL
        • Kolb TM
        • et al.
        Exercise RV ejection fraction predicts RV contractile reserve.
        J Heart Lung Transplant. 2021; 40: 504-512https://doi.org/10.1016/j.healun.2021.02.005
        • Borlaug BA
        • Reddy YNV.
        The role of the pericardium in heart failure: implications for pathophysiology and treatment.
        JACC Heart Fail. 2019; 7: 574-585https://doi.org/10.1016/j.jchf.2019.03.021
        • Atherton JJ
        • Moore TD
        • Lele SS
        • et al.
        Diastolic ventricular interaction in chronic heart failure.
        Lancet. 1997; 349: 1720-1724https://doi.org/10.1016/S0140-673605109-4
        • Astrand PO
        • Cuddy TE
        • Saltin B
        • Stenberg J.
        Cardiac output during submaximal and maximal work.
        J Appl Physiol. 1964; 19: 268-274https://doi.org/10.1152/jappl.1964.19.2.268
        • Fudim M
        • Sobotka PA
        • Dunlap ME.
        Extracardiac abnormalities of preload reserve: mechanisms underlying exercise limitation in HFpEF, autonomic dysfunction, and liver disease.
        Circ Heart Fail. 2021; 14e007308https://doi.org/10.1161/CIRCHEARTFAILURE.120.007308
        • Verbrugge FH
        • Guazzi M
        • Testani JM
        • Borlaug BA.
        Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney.
        Circulation. 2020; 142: 998-1012https://doi.org/10.1161/CIRCULATIONAHA.119.045409
        • Wolsk E
        • Bakkestrøm R
        • Thomsen JH
        • et al.
        The influence of age on hemodynamic parameters during rest and exercise in healthy individuals.
        JACC Heart Fail. 2017; 5: 337-346https://doi.org/10.1016/j.jchf.2016.10.012
        • Reddy YNV
        • Andersen MJ
        • Obokata M
        • et al.
        Arterial stiffening with exercise in patients with HFpEF.
        J Am Coll Cardiol. 2017; 70: 136-148https://doi.org/10.1016/j.jacc.2017.05.029
        • Borlaug BA
        • Olson TP
        • Lam CSP
        • et al.
        Global cardiovascular reserve dysfunction in HFpEF.
        J Am Coll Cardiol. 2010; 56: 845-854https://doi.org/10.1016/j.jacc.2010.03.077
        • Borlaug BA
        • Jaber WA
        • Ommen SR
        • Lam CSP
        • Redfield MM
        • Nishimura RA.
        Diastolic relaxation and compliance reserve during dynamic exercise in HFpEF.
        Heart. 2011; 97: 964-969https://doi.org/10.1136/hrt.2010.212787
        • Reddy YNV
        • Obokata M
        • Wiley B
        • et al.
        The haemodynamic basis of lung congestion during exercise in HFpEF.
        Eur Heart J. 2019; 40: 3721-3730https://doi.org/10.1093/eurheartj/ehz713
        • Borlaug BA
        • Melenovsky V
        • Russell SD
        • et al.
        Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with HFpEF.
        Circulation. 2006; 114: 2138-2147https://doi.org/10.1161/CIRCULATIONAHA.106.632745
        • Colucci WS
        • Ribeiro JP
        • Rocco MB
        • et al.
        Impaired chronotropic response to exercise in patients with congestive heart failure.
        Circulation. 1989; 80: 314-323https://doi.org/10.1161/01.cir.80.2.314
      1. Houstis NE, Eisman AS, Pappagianopoulos PP, et al. Exercise intolerance in HFpEF: diagnosing and ranking its causes using personalized O2 pathway analysis. Circulation 2018;137:148–61. doi:10.1161/CIRCULATIONAHA.117.029058.

        • Sorimachi H
        • Burkhoff D
        • Verbrugge FH
        • et al.
        Obesity, venous capacitance, and venous compliance in HFpEF.
        Eur J Heart Fail. 2021 May 30 [Epub ahead of print]; https://doi.org/10.1002/ejhf.2254
        • Kovacs G
        • Avian A
        • Olschewski A
        • Olschewski H.
        Zero reference level for right heart catheterisation.
        Eur Respir J. 2013; 42: 1586-1594https://doi.org/10.1183/09031936.00050713
        • Saxena A
        • Garan AR
        • Kapur NK
        • et al.
        Value of hemodynamic monitoring in patients with cardiogenic shock undergoing mechanical circulatory support.
        Circulation. 2020; 141: 1184-1197https://doi.org/10.1161/CIRCULATIONAHA.119.043080
        • Jain CC
        • Borlaug BA.
        Performance and Interpretation of invasive hemodynamic exercise testing.
        Chest. 2020; 158: 2119-2129https://doi.org/10.1016/j.chest.2020.05.552
        • Narang N
        • Thibodeau JT
        • Levine BD
        • et al.
        Inaccuracy of estimated resting oxygen uptake in the clinical setting.
        Circulation. 2014; 129: 203-210https://doi.org/10.1161/CIRCULATIONAHA.113.003334
        • Hoeper MM
        • Maier R
        • Tongers J
        • et al.
        Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in PH.
        Am J Respir Crit Care Med. 1999; 160: 535-541https://doi.org/10.1164/ajrccm.160.2.9811062
        • Sommer RJ
        • Hijazi ZM
        • Rhodes JF.
        Pathophysiology of congenital heart disease in the adult: part I: shunt lesions.
        Circulation. 2008; 117: 1090-1099https://doi.org/10.1161/CIRCULATIONAHA.107.714402
        • Eisman AS
        • Shah RV
        • Dhakal BP
        • et al.
        Pulmonary capillary wedge pressure patterns during exercise predict exercise capacity and incident heart failure.
        Circ Heart Fail. 2018; 11e004750https://doi.org/10.1161/CIRCHEARTFAILURE.117.004750
        • Lindenfeld J
        • Albert NM
        • Boehmer JP
        • et al.
        HFSA 2010 Comprehensive Heart Failure Practice Guideline.
        J Card Fail. 2010; 16: e1-e194https://doi.org/10.1016/j.cardfail.2010.04.004
        • Binanay C
        • Califf RM
        • Hasselblad V
        • et al.
        Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial.
        JAMA. 2005; 294: 1625-1633https://doi.org/10.1001/jama.294.13.1625
        • Hernandez GA
        • Lemor A
        • Blumer V
        • et al.
        Trends in utilization and outcomes of pulmonary artery catheterization in PH with and without cardiogenic shock.
        J Card Fail. 2019; 25: 364-371https://doi.org/10.1016/j.cardfail.2019.03.004
        • Garan AR
        • Kanwar M
        • Thayer KL
        • et al.
        Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality.
        JACC Heart Fail. 2020; 8: 903-913https://doi.org/10.1016/j.jchf.2020.08.012
        • Rossello X
        • Bueno H
        • Gil V
        • et al.
        Synergistic impact of systolic blood pressure and perfusion status on mortality in acute heart failure.
        Circ Heart Fail. 2021; 14e007347https://doi.org/10.1161/CIRCHEARTFAILURE.120.007347
        • Jentzer JC
        • Burstein B
        • Van Diepen S
        • et al.
        Defining shock and preshock for mortality risk stratification in cardiac intensive care unit patients.
        Circ Heart Fail. 2021; 14e007678https://doi.org/10.1161/CIRCHEARTFAILURE.120.007678
      2. Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter Cardiovasc Interv 2019;94:29–37. doi:10.1002/ccd.28329.

        • Thayer KL
        • Zweck E
        • Ayouty M
        • et al.
        Invasive hemodynamic assessment and classification of in-hospital mortality risk among patients with cardiogenic shock.
        Circ Heart Fail. 2020; 13e007099https://doi.org/10.1161/CIRCHEARTFAILURE.120.007099
      3. Lim HS. Cardiac power output revisited. Circ Heart Fail 2020;13:e007393. doi:10.1161/CIRCHEARTFAILURE.120.007393.

      4. Basir MB, Schreiber T, Dixon S, et al. Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: the Detroit cardiogenic shock initiative.Catheter Cardiovasc Interv2018;91:454–61. doi:10.1002/ccd.27427.

        • Taleb I
        • Koliopoulou AG
        • Tandar A
        • et al.
        Shock team approach in refractory cardiogenic shock requiring short-term mechanical circulatory support: a proof of concept.
        Circulation. 2019; 140: 98-100https://doi.org/10.1161/CIRCULATIONAHA.119.040654
        • Tehrani BN
        • Truesdell AG
        • Sherwood MW
        • et al.
        Standardized team-based care for cardiogenic shock.
        J Am Coll Cardiol. 2019; 73: 1659-1669https://doi.org/10.1016/j.jacc.2018.12.084
        • Tongers J
        • Sieweke J-T
        • Kühn C
        • et al.
        Early escalation of mechanical circulatory support stabilizes and potentially rescues patients in refractory cardiogenic shock.
        Circ Heart Fail. 2020; 13e005853https://doi.org/10.1161/CIRCHEARTFAILURE.118.005853
        • Griepp RB
        • Stinson EB
        • Dong E
        • Clark DA
        • Shumway NE.
        Determinants of operative risk in human heart transplantation.
        Am J Surg. 1971; 122: 192-197https://doi.org/10.1016/0002-961090316-3
        • Costard-Jäckle A
        • Fowler MB.
        Influence of preoperative pulmonary artery pressure on mortality after heart transplantation.
        J Am Coll Cardiol. 1992; 19: 48-54https://doi.org/10.1016/0735-109790050-w
        • Guglin M
        • Mehra S
        • Mason TJ.
        Comparison of drugs for PH reversibility testing: a meta-analysis.
        Pulm Circ. 2013; 3: 406-413https://doi.org/10.4103/2045-8932.113180
        • Chomsky DB
        • Lang CC
        • Rayos GH
        • et al.
        Hemodynamic exercise testing. A valuable tool in the selection of cardiac transplantation candidates.
        Circulation. 1996; 94: 3176-3183https://doi.org/10.1161/01.cir.94.12.3176
        • Frankfurter C
        • Molinero M
        • Vishram-Nielsen JKK
        • et al.
        Predicting the risk of right ventricular failure in patients undergoing LVAD implantation: a systematic review.
        Circ Heart Fail. 2020; 13e006994https://doi.org/10.1161/CIRCHEARTFAILURE.120.006994
        • Nadir AM
        • Beadle R
        • Lim HS.
        Kussmaul physiology in patients with heart failure.
        Circ Heart Fail. 2014; 7: 440-447https://doi.org/10.1161/CIRCHEARTFAILURE.113.000830
        • Morine KJ
        • Kiernan MS
        • Pham DT
        • Paruchuri V
        • Denofrio D
        • Kapur NK.
        Pulmonary artery pulsatility index is associated with right ventricular failure after LVAD surgery.
        J Card Fail. 2016; 22: 110-116https://doi.org/10.1016/j.cardfail.2015.10.019
        • Kang G
        • Ha R
        • Banerjee D.
        Pulmonary artery pulsatility index predicts right ventricular failure after LVAD implantation.
        J Heart Lung Transplant. 2016; 35: 67-73https://doi.org/10.1016/j.healun.2015.06.009
        • Uriel N
        • Morrison KA
        • Garan AR
        • et al.
        Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow LVADs: the Columbia ramp study.
        J Am Coll Cardiol. 2012; 60: 1764-1775https://doi.org/10.1016/j.jacc.2012.07.052
        • Uriel N
        • Sayer G
        • Addetia K
        • et al.
        Hemodynamic ramp tests in patients with LVADs.
        JACC Heart Fail. 2016; 4: 208-217https://doi.org/10.1016/j.jchf.2015.10.001
      5. Imamura T, Jeevanandam V, Kim G, et al. Optimal hemodynamics during LVAD support are associated with reduced readmission rates. Circ Heart Fail 2019;12:e005094. doi:10.1161/CIRCHEARTFAILURE.118.005094.

        • Dridi NP
        • Vishram-Nielsen JKK
        • Gustafsson F.
        Exercise tolerance in patients treated with a durable LVAD: importance of myocardial recovery.
        J Card Fail. 2021; 27: 486-493https://doi.org/10.1016/j.cardfail.2020.12.005
        • Dunlay SM
        • Allison TG
        • Pereira NL.
        Changes in cardiopulmonary exercise testing parameters following continuous flow LVAD implantation and heart transplantation.
        J Card Fail. 2014; 20: 548-554https://doi.org/10.1016/j.cardfail.2014.05.008
        • Borlaug BA.
        Evaluation and management of HFpEF.
        Nat Rev Cardiol. 2020; 17: 559-573https://doi.org/10.1038/s41569-020-0363-2
        • Obokata M
        • Reddy YNV
        • Borlaug BA.
        Diastolic dysfunction and HFpEF: understanding mechanisms by using noninvasive methods.
        JACC Cardiovasc Imaging. 2020; 13: 245-257https://doi.org/10.1016/j.jcmg.2018.12.034
        • Pieske B
        • Tschöpe C
        • de Boer RA
        • et al.
        How to diagnose HFpEF: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC).
        Eur Heart J. 2019; 40: 3297-3317https://doi.org/10.1093/eurheartj/ehz641
        • D'Alto M
        • Badesch D
        • Bossone E
        • et al.
        A fluid challenge test for the diagnosis of occult heart failure.
        Chest. 2021; 159: 791-797https://doi.org/10.1016/j.chest.2020.08.019
        • Andersen MJ
        • Olson TP
        • Melenovsky V
        • Kane GC
        • Borlaug BA.
        Differential hemodynamic effects of exercise and volume expansion in people with and without PH.
        Circ Heart Fail. 2015; 8: 41-48https://doi.org/10.1161/CIRCHEARTFAILURE.114.001731
        • Burgess MI
        • Jenkins C
        • Sharman JE
        • Marwick TH.
        Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise.
        J Am Coll Cardiol. 2006; 47: 1891-1900https://doi.org/10.1016/j.jacc.2006.02.042
        • Obokata M
        • Borlaug BA.
        The strengths and limitations of E/e' in HFpEF.
        Eur J Heart Fail. 2018; 20: 1312-1314https://doi.org/10.1002/ejhf.1250
        • Reddy YNV
        • Carter RE
        • Obokata M
        • Redfield MM
        • Borlaug BA
        A simple, evidence-based approach to help guide diagnosis of HFpEF.
        Circulation. 2018; 138: 861-870https://doi.org/10.1161/CIRCULATIONAHA.118.034646
        • Simonneau G
        • Montani D
        • Celermajer DS
        • et al.
        Haemodynamic definitions and updated clinical classification of PH.
        Eur Respir J. 2019; 531801913https://doi.org/10.1183/13993003.01913-2018
        • Kovacs G
        • Berghold A
        • Scheidl S
        • Olschewski H.
        Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review.
        Eur Respir J. 2009; 34: 888-894https://doi.org/10.1183/09031936.00145608
        • Maron BA
        • Hess E
        • Maddox TM
        • et al.
        Association of borderline PH with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program.
        Circulation. 2016; 133: 1240-1248https://doi.org/10.1161/CIRCULATIONAHA.115.020207
        • Galiè N
        • Channick RN
        • Frantz RP
        • et al.
        Risk stratification and medical therapy of pulmonary arterial hypertension.
        Eur Respir J. 2019; 531801889https://doi.org/10.1183/13993003.01889-2018
        • Sitbon O
        • Humbert M
        • Jaïs X
        • et al.
        Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension.
        Circulation. 2005; 111: 3105-3111https://doi.org/10.1161/CIRCULATIONAHA.104.488486
        • Reddy YNV
        • Borlaug BA.
        PH in left heart disease.
        Clin Chest Med. 2021; 42: 39-58https://doi.org/10.1016/j.ccm.2020.11.002
        • Gorter TM
        • Obokata M
        • Reddy YNV
        • Melenovsky V
        • Borlaug BA.
        Exercise unmasks distinct pathophysiologic features in HFpEF and pulmonary vascular disease.
        Eur Heart J. 2018; 39: 2825-2835https://doi.org/10.1093/eurheartj/ehy331
        • Miller WL
        • Grill DE
        • Borlaug BA.
        Clinical features, hemodynamics, and outcomes of PH due to chronic heart failure with reduced ejection fraction: PH and heart failure.
        JACC Heart Fail. 2013; 1: 290-299https://doi.org/10.1016/j.jchf.2013.05.001
        • Vanderpool RR
        • Saul M
        • Nouraie M
        • Gladwin MT
        • Simon MA.
        Association between hemodynamic markers of PH and outcomes in HFpEF.
        JAMA Cardiol. 2018; 3: 298-306https://doi.org/10.1001/jamacardio.2018.0128
        • Weatherald J
        • Boucly A
        • Chemla D
        • et al.
        Prognostic value of follow-up hemodynamic variables after initial management in pulmonary arterial hypertension.
        Circulation. 2018; 137: 693-704https://doi.org/10.1161/CIRCULATIONAHA.117.029254
        • Alkhunaizi FA
        • Harowicz MR
        • Ireland CG
        • et al.
        Kussmaul's sign in PH corresponds with severe pulmonary vascular pathology rather than right ventricular diastolic dysfunction.
        Circ Heart Fail. 2021; 14e007461https://doi.org/10.1161/CIRCHEARTFAILURE.120.007461
        • Tedford RJ
        • Hassoun PM
        • Mathai SC
        • et al.
        Pulmonary capillary wedge pressure augments right ventricular pulsatile loading.
        Circulation. 2012; 125: 289-297https://doi.org/10.1161/CIRCULATIONAHA.111.051540
        • Vachiery J-L
        • Tedford RJ
        • Rosenkranz S
        • et al.
        PH due to left heart disease.
        Eur Respir J. 2019; 531801897https://doi.org/10.1183/13993003.01897-2018
        • Viray MC
        • Bonno EL
        • Gabrielle ND
        • et al.
        Role of pulmonary artery wedge pressure saturation during right heart catheterization: a prospective study.
        Circ Heart Fail. 2020; 13e007981https://doi.org/10.1161/CIRCHEARTFAILURE.120.007981
        • Naeije R
        • Vanderpool R
        • Dhakal BP
        • et al.
        Exercise-induced PH: physiological basis and methodological concerns.
        Am J Respir Crit Care Med. 2013; 187: 576-583https://doi.org/10.1164/rccm.201211-2090CI
        • Hervé P
        • Lau EM
        • Sitbon O
        • et al.
        Criteria for diagnosis of exercise PH.
        Eur Respir J. 2015; 46: 728-737https://doi.org/10.1183/09031936.00021915
        • Ho JE
        • Zern EK
        • Lau ES
        • et al.
        Exercise PH predicts clinical outcomes in patients with dyspnea on effort.
        J Am Coll Cardiol. 2020; 75: 17-26https://doi.org/10.1016/j.jacc.2019.10.048
        • Reddy YNV
        • Obokata M
        • Koepp KE
        • Egbe AC
        • Wiley B
        • Borlaug BA.
        The β-adrenergic agonist albuterol improves pulmonary vascular reserve in HFpEF.
        Circ Res. 2019; 124: 306-314https://doi.org/10.1161/CIRCRESAHA.118.313832
        • Nishimura RA
        • Otto CM
        • Bonow RO
        • et al.
        2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2014;; 129: 2440-2492https://doi.org/10.1161/CIR.0000000000000029
        • Egbe AC
        • Miranda WR
        • Anderson JH
        • Borlaug BA.
        Hemodynamic and clinical implications of impaired pulmonary vascular reserve in the Fontan circulation.
        J Am Coll Cardiol. 2020; 76: 2755-2763https://doi.org/10.1016/j.jacc.2020.10.003
        • Reddy YNV
        • Melenovsky V
        • Redfield MM
        • Nishimura RA
        • Borlaug BA.
        High-output heart failure: a 15-year experience.
        J Am Coll Cardiol. 2016; 68: 473-482https://doi.org/10.1016/j.jacc.2016.05.043
        • Givertz MM
        • Fang JC
        • Sorajja P
        • et al.
        Executive summary of the SCAI/HFSA Clinical Expert Consensus Document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease.
        J Card Fail. 2017; 23: 487-491https://doi.org/10.1016/j.cardfail.2017.04.013