Advertisement

The Traditional Endomyocardial Biopsy: Opportunities to Rethink Its Role as the Gold Standard

      The evolution in device optimization and technique modification to the endomyocardial biopsy (EMB) procedure over many decades has resulted in a relatively easy, straightforward, safe, and effective tool for pathological evaluation.
      • Konno S
      • Sakakibara S
      Endo-myocardial biopsy.
      ,
      • Richardson PJ
      King's endomyocardial bioptome.
      Early techniques for obtaining myocardial biopsies, including percutaneous needle biopsy of the left ventricle, catheter needle biopsy of the interventricular septum, and open thoracotomy, are now simplified to percutaneous biopsies via the right internal jugular vein to the right ventricle under local anesthesia.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Konno S
        • Sakakibara S
        Endo-myocardial biopsy.
        Dis Chest. 1963; 44: 345-350https://doi.org/10.1378/chest.44.4.345
        • Richardson PJ
        King's endomyocardial bioptome.
        Lancet. 1974; 1: 660-661https://doi.org/10.1016/s0140-6736(74)93204-8
      1. Seferović PM, Tsutsui H, Mcnamara DM, et al. Heart Failure Association, Heart Failure Society of America, and Japanese Heart Failure Society Position Statement on Endomyocardial Biopsy. J Card Fail. 2021;27(7):727-743. doi: 10.1016/j.cardfail.2021.04.010. Epub 2021 May 19. PMID: 34022400.

        • Mandel P
        • Metais P
        Les acides nucléiques du plasma sanguin chez l'homme” [Nuclear acids in human blood plasma].
        Comptes rendus des seances de la Societe de biologie et de ses filiales. 1948; 142: 241-243
        • Lo YM
        • Corbetta N
        • Chamberlain PF
        • et al.
        Presence of fetal DNA in maternal plasma and serum.
        Lancet. 1997; 350: 485-487https://doi.org/10.1016/S0140-6736(97)02174-0
        • Papageorgiou EA
        • Karagrigoriou A
        • Tsaliki E
        • et al.
        Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21.
        Nat Med. 2011; 17: 510-513https://doi.org/10.1038/nm.2312
        • Thress KS
        • Brant R
        • Carr TH
        • et al.
        EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291.
        Lung Cancer. 2015; 90: 509-515https://doi.org/10.1016/j.lungcan.2015.10.004
        • Sequist LV
        • Soria JC
        • Goldman JW
        • et al.
        Rociletinib in EGFR-mutated non-small-cell lung cancer.
        N Engl J Med. 2015; 372: 1700-1709https://doi.org/10.1056/NEJMoa1413654
        • Reeve J
        • Sellarés J
        • Mengel M
        • et al.
        Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies.
        Am J Transplant. 2013; 13: 645-655https://doi.org/10.1111/ajt.12079
        • Bloom RD
        • Bromberg JS
        • Poggio ED
        • et al.
        Cell-free DNA and active rejection in kidney allografts.
        J Am Soc Nephrol. 2017; 28: 2221-2232https://doi.org/10.1681/ASN.2016091034
        • Khush KK
        • Patel J
        • Pinney S
        • et al.
        Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: a prospective multicenter study.
        Am J Transplant. 2019; 19: 2889-2899https://doi.org/10.1111/ajt.15339
        • Agbor-Enoh S
        • Shah P
        • Tunc I
        • et al.
        Cell-free DNA to detect heart allograft acute rejection.
        Circulation. 2021; 143: 1184-1197https://doi.org/10.1161/CIRCULATIONAHA.120.049098
        • Hollander Z
        • Mohammadi TH
        • Assadian S
        • et al.
        Cost-effectiveness of a blood-based biomarker compared to endomyocardial biopsy for the diagnosis of acute allograft rejection.
        J Heart Lung Transplant. 2016; 35: S53
        • Pham MX
        • Teuteberg JJ
        • Kfoury AG
        • et al.
        Gene-expression profiling for rejection surveillance after cardiac transplantation.
        N Engl J Med. 2010; 362: 1890-1900https://doi.org/10.1056/NEJMoa0912965
        • Caves PK
        • Stinson EB
        • Griepp RB
        • Rider AK
        • Dong Jr, E
        • Shumway NE.
        Results of 54 cardiac transplants.
        Surgery. 1973; 74: 307-314
        • Costanzo MR
        • Dipchand A
        • Starling R
        • et al.
        The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients.
        J Heart Lung Transplant. 2010; 29: 914-956https://doi.org/10.1016/j.healun.2010.05.034
        • Khush KK
        • Cherikh WS
        • Chambers DC
        • et al.
        The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-fifth Adult Heart Transplantation Report-2018; focus theme: multiorgan transplantation.
        J Heart Lung Transplant. 2018; 37: 1155-1168https://doi.org/10.1016/j.healun.2018.07.022
        • Alam A
        • Kobashigawa J
        • Milligan GP
        • Hall SA.
        Evolution of testing for allograft rejection after orthotopic heart transplantation without the evolution of guidelines and a proposal for the multidisciplinary health-team approach [published online ahead of print, 2021 Mar 19].
        Am J Cardiol. 2021; 149 (S0002-9149(21)00254-X): 147-149https://doi.org/10.1016/j.amjcard.2021.03.013