Advertisement

Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms

      Abstract

      Coronavirus disease 2019 (COVID-19) is a pandemic that has affected more than 1.8 million people worldwide, overwhelmed health care systems owing to the high proportion of critical presentations, and resulted in more than 100,000 deaths. Since the first data analyses in China, elevated cardiac troponin has been noted in a substantial proportion of patients, implicating myocardial injury as a possible pathogenic mechanism contributing to severe illness and mortality. Accordingly, high troponin levels are associated with increased mortality in patients with COVID-19. This brief review explores the available evidence regarding the association between COVID-19 and myocardial injury.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huang C.
        • Wang Y.
        • Li X.
        • Ren L.
        • Zhao J.
        • Hu Y.
        • et al.
        Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
        Lancet. 2020; 395: 497-506
      1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 85. Available at: https://reliefweb.int/report/world/coronavirus-disease-2019-covid-19-situation-report-85-14-april-2020.

        • Guan W.
        • Ni Z.
        • Hu Y.
        • Liang W.H.
        • Ou C.Q.
        • He J.X.
        • et al.
        Clinical characteristics of coronavirus disease 2019 in China.
        N Engl J Med. 2020 Feb 28; ([Epub ahead of print])
        • Chen N.
        • Zhou M.
        • Dong X.
        • Qu J.
        • Gong F.
        • Han Y.
        • et al.
        Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.
        Lancet. 2020; 395: 507-513
        • Wang D.
        • Hu B.
        • Hu C.
        • Zhu F.
        • Liu X.
        • Zhang J.
        • et al.
        Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China.
        JAMA. 2020 Feb 7; ([Epub ahead of print])
        • Guo T.
        • Fan Y.
        • Chen M.
        • Wu X.
        • Zhang L.
        • He T.
        • et al.
        Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19).
        JAMA Cardiol. 2020 March 27; ([Epub ahead of print])
        • Shi S.
        • Qin M.
        • Shen B.
        • Cai Y.
        • Liu T.
        • Yang F.
        • et al.
        Association of Cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China.
        JAMA Cardiol. 2020 March 25; ([Epub ahead of print])
        • Zhou F.
        • Yu T.
        • Du R.
        • Fan G.
        • Liu Y.
        • Liu Z.
        • et al.
        Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.
        Lancet. 2020; 395: 1054-1062
        • Yang X.
        • Yu Y.
        • Xu J.
        • Shu H.
        • Xia J.
        • Liu H.
        • et al.
        Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.
        Lancet Respir Med. 2020 Feb 20; ([Epub ahead of print])
        • Chen T.
        • Wu D.
        • Chen H.
        • Yan W.
        • Yang D.
        • Chen G.
        • et al.
        Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.
        BMJ. 2020 Mar 26; ([Epub ahead of print])
        • Ruan Q.
        • Yang K.
        • Wang W.
        • Jiang L.
        • Song J.
        Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China.
        Intensive Care Med. 2020 March 3; ([Epub ahead of print])
        • He X.W.
        • Lai J.S.
        • Cheng J.
        • Wang M.W.
        • Liu Y.J.
        • Xiao Z.C.
        • et al.
        [Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients].
        Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48: E011
        • Wang L.
        • He W.
        • Yu X.
        • Hu D.
        • Bao M.
        • Liu H.
        • et al.
        Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up.
        J Infect. 2020 Mar 30; ([Epub ahead of print])
      2. Long B., Long D.A., Tannenbaum L., Koyfman A.An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. Am J Emerg Med[Epub ahead of print].

        • Frencken J.F.
        • van Baal L.
        • Kappen T.H.
        • Donker D.W.
        • Horn J.
        • van der Poll T.
        • et al.
        Myocardial injury in critically ill patients with community-acquired pneumonia. A cohort study.
        Ann Am Thorac Soc. 2019; 16: 606-612
        • Menéndez R.
        • Méndez R.
        • Aldás I.
        • Reyes S.
        • Gonzalez-Jimenez P.
        • España P.P.
        • et al.
        Community-acquired pneumonia patients at risk for early and long-term cardiovascular events are identified by cardiac biomarkers.
        Chest. 2019; 156: 1080-1091
        • Caforio A.L.P.
        • Pankuweit S.
        • Arbustini E.
        • Basso C.
        • Gimeno-Blanes J.
        • Felix S.B.
        • et al.
        Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases.
        Eur Heart J. 2013; 34 (2648a–8d): 2636-2648
        • Maekawa Y.
        • Ouzounian M.
        • Opavsky M.A.
        • Liu P.P.
        Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity.
        Circulation. 2007; 115: 5-8
        • Lawson C.M.
        Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis.
        Cell Mol Life Sci CMLS. 2000; 57: 552-560
        • Badorff C.
        • Knowlton K.U.
        Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: from bench to bedside.
        Med Microbiol Immunol (Berl). 2004; 193: 121-126
        • Hoffmann M.
        • Kleine-Weber H.
        • Schroeder S.
        • Krüger N.
        • Herrler T.
        • Erichsen S.
        • et al.
        SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.
        Cell. 2020; (271–80.e8): 181
        • Chen L.
        • Li X.
        • Chen M.
        • Feng Y.
        • Xiong C.
        The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2.
        Cardiovasc Res. 2020 mar 20; ([Epub ahead of print])
        • Patel V.B.
        • Zhong J.-C.
        • Grant M.B.
        • Oudit G.Y.
        Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure.
        Circ Res. 2016; 118: 1313-1326
        • Vaduganathan M.
        • Vardeny O.
        • Michel T.
        • McMurray J.J.V.
        • Pfeffer M.A.
        • Solomon S.D.
        Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19.
        N Engl J Med. 2020; 382: 1653-1659
        • Oudit G.Y.
        • Kassiri Z.
        • Jiang C.
        • Liu P.P.
        • Poutanen S.M.
        • Penninger J.M.
        • et al.
        SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS.
        Eur J Clin Invest. 2009; 39: 618-625
        • Xu X.
        • Chen P.
        • Wang J.
        • Feng J.
        • Zhou H.
        • Li X.
        • et al.
        Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.
        Sci China Life Sci. 2020; 63: 457-460
        • Zhu N.
        • Zhang D.
        • Wang W.
        • Li X.
        • Yang B.
        • Song J.
        • et al.
        A novel coronavirus from patients with pneumonia in China, 2019.
        N Engl J Med. 2020; 382: 727-733
        • Inciardi R.M.
        • Lupi L.
        • Zaccone G.
        • Italia L.
        • Raffo M.
        • Tomasoni D.
        • et al.
        Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19).
        JAMA Cardiol. 2020 March 27; ([Epub ahead of print])
        • Zeng J.H.
        • Liu Y.-X.
        • Yuan J.
        • Wang F.X.
        • Wu W.B.
        • Li J.X.
        • et al.
        First case of COVID-19 infection with fulminant myocarditis complication: case report and insights.
        Life Sci. 2020 March 11; ([Epub ahead of print] 11 March 2020)https://doi.org/10.20944/preprints202003.0180.v1
        • Hu H.
        • Ma F.
        • Wei X.
        • Fang Y.
        Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin.
        Eur Heart J. 2020 Mar 16; ([Epub ahead of print])
        • Xu Z.
        • Shi L.
        • Wang Y.
        • Zhang J.
        • Huang L.
        • Zhang C.
        • et al.
        Pathological findings of COVID-19 associated with acute respiratory distress syndrome.
        Lancet Respir Med. 2020; 8: 420-422
        • Hamming I.
        • Timens W.
        • Bulthuis M.L.C.
        • Lely A.T.
        • Navis G.
        • van Goor H.
        Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.
        J Pathol. 2004; 203: 631-637
        • Tikellis C.
        • Bernardi S.
        • Burns W.C.
        Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease.
        Curr Opin Nephrol Hypertens. 2011; 20: 62-68
        • Kuster G.M.
        • Pfister O.
        • Burkard T.
        • Zhou Q.
        • Twerenbold R.
        • Haaf P.
        • et al.
        SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19?.
        Eur Heart J. 2020 Mar 20; ([Epub ahead of print])
        • Zhang H.
        • Penninger J.M.
        • Li Y.
        • Zhong N.
        • Slutsky A.S.
        Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.
        Intensive Care Med. 2020; 46: 586-590
        • Guo J.
        • Huang Z.
        • Lin L.
        • Lv J.
        Coronavirus disease 2019 (COVID‐19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin‐converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection.
        J Am Heart Assoc. 2020; 9e016219
        • Yin S.
        • Huang M.
        • Li D.
        • Tang N.
        Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2.
        J Thromb Thrombolysis. 2020 Apr 3; ([Epub ahead of print])
        • Chong P.Y.
        • Chui P.
        • Ling A.E.
        • Franks T.J.
        • Tai D.Y.
        • Leo Y.S.
        • et al.
        Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis.
        Arch Pathol Lab Med. 2004; 128: 195-204
        • Danzi G.B.
        • Loffi M.
        • Galeazzi G.
        • Gherbesi E.
        Acute pulmonary embolism and COVID-19 pneumonia: a random association?.
        Eur Heart J. 2020 Mar 30; ([Epub ahead of print])
        • Tang N.
        • Li D.
        • Wang X.
        • Sun Z.
        Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia.
        J Thromb Haemost JTH. 2020; 18: 844-847
        • Idell S.
        Coagulation, fibrinolysis, and fibrin deposition in acute lung injury.
        Crit Care Med. 2003; 31: S213-S220
        • Chang L.-Y.
        • Lu C.-Y.
        • Shao P.-L.
        • Lee P.I.
        • Lin M.T.
        • Fan T.Y.
        • et al.
        Viral infections associated with Kawasaki disease.
        J Formos Med Assoc Taiwan Yi Zhi. 2014; 113: 148-154
        • Shirato K.
        • Imada Y.
        • Kawase M.
        • Nakagaki K.
        • Matsuyama S.
        • Taguchi F.
        Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease.
        J Med Virol. 2014; 86: 2146-2153
        • Giray T.
        • Biçer S.
        • Küçük Ö.
        • Çöl D.
        • Yalvaç Z.
        • Gürol Y.
        • et al.
        Four cases with Kawasaki disease and viral infection: aetiology or association.
        Infez Med. 2016; 24: 340-344
        • Ding Y.
        • Wang H.
        • Shen H.
        • Li Z.
        • Geng J.
        • Han H.
        • et al.
        The clinical pathology of severe acute respiratory syndrome (SARS): a report from China.
        J Pathol. 2003; 200: 282-289
        • Chen Y.
        • Li Y.
        • Liu X.
        • et al.
        Potential pathophysiological mechanisms underlying COVID-19-induced myocardial injury.
        Chin J Pathophysiol. 2020; 36: 573-576
        • Zheng Y.-Y.
        • Ma Y.-T.
        • Zhang J.-Y.
        • Xie X.
        COVID-19 and the cardiovascular system.
        Nat Rev Cardiol. 2020; 17: 259-260
        • Pan X.
        • Xu D.
        • Zhang H.
        • Zhou W.
        • Wang L.H.
        • Cui X.G.
        Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis.
        Intensive Care Med. 2020 Mar 31; ([Epub ahead of print])
        • Madjid M.
        • Miller C.C.
        • Zarubaev V.V.
        • Marinich I.G.
        • Kiselev O.I.
        • Lobzin Y.V.
        • et al.
        Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34 892 subjects.
        Eur Heart J. 2007; 28: 1205-1210
        • Nguyen J.L.
        • Yang W.
        • Ito K.
        • Matte T.D.
        • Shaman J.
        • Kinney P.L.
        Seasonal influenza infections and cardiovascular disease mortality.
        JAMA Cardiol. 2016; 1: 274
        • Kwong J.C.
        • Schwartz K.L.
        • Campitelli M.A.
        • Chung H.
        • Crowcroft N.S.
        • Karnauchow T.
        • et al.
        Acute myocardial infarction after laboratory-confirmed influenza infection.
        N Engl J Med. 2018; 378: 345-353
        • Smeeth L.
        • Thomas S.L.
        • Hall A.J.
        • Hubbard R.
        • Farrington P.
        • Vallance P.
        Risk of myocardial infarction and stroke after acute infection or vaccination.
        N Engl J Med. 2004; 351: 2611-2618
        • Thygesen K.
        • Alpert J.S.
        • Jaffe A.S.
        • Chaitman B.R.
        • Bax J.J.
        • Morrow D.A.
        • et al.
        Fourth universal definition of myocardial infarction (2018).
        Eur Heart J. 2018; 72: 2231-2264
        • Bonow R.O.
        • Fonarow G.C.
        • O'Gara P.T.
        • Yancy C.W.
        Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality.
        JAMA Cardiol. 2020 Mar 27; ([Epub ahead of print])
        • Peiris J.
        • Chu C.
        • Cheng V.
        • Chan K.S.
        • Hung I.F.
        • Poon L.L.
        • et al.
        Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study.
        Lancet. 2003; 361: 1767-1772
        • Xiong T.-Y.
        • Redwood S.
        • Prendergast B.
        • Chen M.
        Coronaviruses and the cardiovascular system: acute and long-term implications.
        Eur Heart J. 2020 Mar 18; ([Epub ahead of print])
        • Peiró C.
        • Moncada S.
        Substituting angiotensin-(1-7) to prevent lung damage in SARSCoV2 infection?.
        Circulation. 2020 Apr 3; ([Epub ahead of print])
        • Stanciu A.E.
        Cytokines in heart failure.
        Advances in clinical chemistry. Elsevier, New York2019: 63-113
        • Kofler S.
        • Nickel T.
        • Weis M.
        Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation.
        Clin Sci Lond Engl 1979. 2005; 108: 205-213
        • Mirzaei H.
        • Ferns G.A.
        • Avan A.
        • et al.
        Cytokines and MicroRNA in coronary artery disease.
        Advances in clinical chemistry. Elsevier, New York2019: 47-70
        • Teijaro J.R.
        • Walsh K.B.
        • Cahalan S.
        • Fremgen D.M.
        • Roberts E.
        • Scott F.
        • et al.
        Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection.
        Cell. 2011; 146: 980-991
        • Cao B.
        • Wang Y.
        • Wen D.
        • Liu W.
        • Wang J.
        • Fan G.
        • et al.
        A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19.
        N Engl J Med. 2020 Mar 18; ([Epub ahead of print])
        • Conti P.
        • Gallenga C.E.
        • Tetè G.
        • Caraffa A.
        • Ronconi G.
        • Younes A.
        • et al.
        How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1.
        J Biol Regul Homeost Agents. 2020 Mar 31; ([Epub ahead of print])
        • Zhang C.
        • Wu Z.
        • Li J.-W.
        • Zhao H.
        • Wang G.Q.
        The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality.
        Int J Antimicrob Agents. 2020 Mar 29; ([Epub ahead of print])
        • Gaertner F.
        • Massberg S.
        Blood coagulation in immunothrombosis-At the frontline of intravascular immunity.
        Semin Immunol. 2016; 28: 561-569
        • Thachil J.
        The versatile heparin in COVID-19.
        J Thromb Haemost. 2020 Apr 2; ([Epub ahead of print])
        • Young E.
        The anti-inflammatory effects of heparin and related compounds.
        Thromb Res. 2008; 122: 743-752
        • Li J.-P.
        • Vlodavsky I.
        Heparin, heparan sulfate and heparanase in inflammatory reactions.
        Thromb Haemost. 2009; 102: 823-828
        • Esmon C.T.
        Targeting factor Xa and thrombin: impact on coagulation and beyond.
        Thromb Haemost. 2014; 111: 625-633
        • Poterucha T.J.
        • Libby P.
        • Goldhaber S.Z.
        More than an anticoagulant: do heparins have direct anti-inflammatory effects?.
        Thromb Haemost. 2017; 117: 437-444
        • Mousavi S.
        • Moradi M.
        • Khorshidahmad T.
        • et al.
        Anti-inflammatory effects of heparin and its derivatives: a systematic review.
        Adv Pharmacol Sci. 2015; 2015507151