Advertisement
Review| Volume 26, ISSUE 11, P998-1005, November 2020

Myocardial Ketones Metabolism in Heart Failure

  • Author Footnotes
    # Authors have equally contributed to this work.
    Qutuba G. Karwi
    Correspondence
    Reprint requests: Dr. Qutuba G. Karwi, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, Canada T6G 2S2. Phone: (780)-490-8659, Fax: (780)-492-9753.
    Footnotes
    # Authors have equally contributed to this work.
    Affiliations
    Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada

    Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
    Search for articles by this author
  • Author Footnotes
    # Authors have equally contributed to this work.
    Dipsikha Biswas
    Correspondence
    Co-corresponding author: Dipsikha Biswas, Dalhousie University, Dalhousie Medicine New Brunswick. 100, Tucker Park Road. Saint John E2L4L5, New Brunswick, Canada.
    Footnotes
    # Authors have equally contributed to this work.
    Affiliations
    Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick, Canada
    Search for articles by this author
  • Thomas Pulinilkunnil
    Affiliations
    Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick, Canada
    Search for articles by this author
  • Gary D. Lopaschuk
    Affiliations
    Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
    Search for articles by this author
  • Author Footnotes
    # Authors have equally contributed to this work.

      Abstract

      Ketone bodies can become a major source of adenosine triphosphate production during stress to maintain bioenergetic homeostasis in the brain, heart, and skeletal muscles. In the normal heart, ketone bodies contribute from 10% to 15% of the cardiac adenosine triphosphate production, although their contribution during pathologic stress is still not well-characterized and currently represents an exciting area of cardiovascular research. This review focuses on the mechanisms that regulate circulating ketone levels under physiologic and pathologic conditions and how this impacts cardiac ketone metabolism. We also review the current understanding of the role of augmented ketone metabolism as an adaptive response in different types and stages of heart failure. This analysis includes the emerging experimental and clinical evidence of the potential favorable effects of boosting ketone metabolism in the failing heart and the possible mechanisms of action through which these interventions may mediate their cardioprotective effects. We also critically appraise the emerging data from animal and human studies which characterize the role of ketones in mediating the cardioprotection established by the new class of antidiabetic drugs, namely sodium-glucose co-transporter inhibitors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Karwi QG
        • Uddin GM
        • Ho KL
        • Lopaschuk GD
        Loss of metabolic flexibility in the failing heart.
        Front Cardiovasc Med. 2018; 5: 68
        • Lopaschuk GD
        • Ussher JR
        • Folmes CDL
        • Jaswal JS
        • Stanley WC
        Myocardial fatty acid metabolism in health and disease.
        Physiol Rev. 2010; 90: 207-258
        • Lopaschuk GD.
        Metabolic Modulators in heart disease: past, present, and future.
        Can J Cardiol. 2017; 33: 838-849
        • Lopaschuk GD
        • Ussher JR.
        Evolving concepts of myocardial energy metabolism.
        Circ Res. 2016; 119: 1173-1176
        • Kolwicz Jr., SC
        • Purohit S
        • Tian R
        Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
        Circ Res. 2013; 113: 603-616
        • Taegtmeyer H
        • Lubrano G.
        Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart.
        F1000Prime Rep. 2014; 6: 90
        • Lopaschuk GD
        • Collins-Nakai R
        • Olley PM
        • Montague TJ
        • McNeil G
        • Gayle M
        • et al.
        Plasma fatty acid levels in infants and adults after myocardial ischemia.
        Am Heart J. 1994; 128: 61-67
        • Fillmore N
        • Wagg CS
        • Zhang L
        • Fukushima A
        • Lopaschuk GD
        Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart.
        Am J Physiol Endocrinol Metab. 2018; 315: E1046-E1052
        • De Jong KA
        • Lopaschuk GD
        Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction.
        Can J Cardiol. 2017; 33: 860-871
        • Bertero E
        • Maack C.
        Metabolic remodelling in heart failure.
        Nat Rev Cardiol. 2018; 15: 457-470
        • Zhang L
        • Jaswal JS
        • Ussher JR
        • Sankaralingam S
        • Wagg C
        • Zaugg M
        • et al.
        Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
        Circ Heart Fail. 2013; 6: 1039-1048
        • Byrne NJ
        • Levasseur J
        • Sung MM
        • Masson G
        • Boisvenue J
        • Young ME
        • et al.
        Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression.
        Cardiovasc Res. 2016; 110: 249-257
        • Mori J
        • Alrob OA
        • Wagg CS
        • Harris RA
        • Lopaschuk GD
        • Oudit GY
        ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4.
        Am J Physiol Heart Circ Physiol. 2013; 304: H1103-H1113
        • Mori J
        • Basu R
        • McLean BA
        • Das SK
        • Zhang L
        • Patel VB
        • et al.
        Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction.
        Circ Heart Fail. 2012; 5: 493-503
        • Zhabyeyev P
        • Gandhi M
        • Mori J
        • Basu R
        • Kassiri Z
        • Clanachan A
        • et al.
        Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload.
        Cardiovasc Res. 2013; 97: 676-685
        • Neubauer S.
        The failing heart — an engine out of fuel.
        N Engl J Med. 2007; 356: 1140-1151
        • Karwi QG
        • Jorg AR
        • Lopaschuk GD
        Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism.
        Biochem J. 2019; 476: 1695-1712
        • Bedi KC
        • Snyder NW
        • Brandimarto J
        • Aziz M
        • Mesaros C
        • Worth AJ
        • et al.
        Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure.
        Circulation. 2016; 133: 706-716
        • Aubert G
        • Martin OJ
        • Horton JL
        • Lai L
        • Vega RB
        • Leone TC
        • et al.
        The failing heart relies on ketone bodies as a fuel.
        Circulation. 2016; 133: 698-705
        • Cotter DG
        • Schugar RC
        • Crawford Pa
        Ketone body metabolism and cardiovascular disease.
        Am J Physiol Heart Circ Physiol. 2013; 304: H1060-H1076
        • Newman JC
        • Verdin E.
        Ketone bodies as signaling metabolites.
        Trends in Endocrinol Metab. 2014; 25: 42-52
        • Robinson aM
        • Williamson DH
        Physiological roles of ketone bodies as substrates and signals in mammalian tissues.
        Physiol Rev. 1980; 60: 143-187
        • Cahill Jr., GF
        • Herrera MG
        • Morgan AP
        • Soeldner JS
        • Steinke J
        • Levy PL
        • et al.
        Hormone-fuel interrelationships during fasting.
        J Clin Invest. 1966; 45: 1751-1769
        • Puchalska P
        • Crawford PA.
        Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics.
        Cell Metab. 2017; 25: 262-284
        • Puisac B
        • Ramos M
        • Arnedo M
        • Menao S
        • Gil-Rodriguez MC
        • Teresa-Rodrigo ME
        • et al.
        Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway.
        Mol Biol Rep. 2012; 39: 4777-4785
        • Thumelin S
        • Forestier M
        • Girard J
        • Pegorier JP
        Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney.
        Biochem J. 1993; 292: 493-496
        • Marcondes-Braga FG
        • Batista GL
        • Gutz IG
        • Saldiva PH
        • Mangini S
        • Issa VS
        • et al.
        Impact of exhaled breath acetone in the prognosis of patients with heart failure with reduced ejection fraction (HFrEF). One year of clinical follow-up.
        PLoS One. 2016; 11e0168790
        • Ruzsanyi V
        • Peter Kalapos M
        Breath acetone as a potential marker in clinical practice.
        J Breath Res. 2017; 11024002
        • Bock H
        • Fleischer S.
        Preparation of a homogeneous soluble D-beta-hydroxybutyrate apodehydrogenase from mitochondria.
        J Biol Chem. 1975; 250: 5761-5774
        • Lehninger AL
        • Sudduth HC
        • Wise JB
        d-β-hydroxybutyric dehydrogenase of mitochondria.
        J Biol Chem. 1960; 235: 2450-2455
        • Williamson DH
        • Lund P
        • Krebs HA
        The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
        Biochem J. 1967; 103: 514-527
        • Williamson JR
        • Krebs HA.
        Acetoacetate as fuel of respiration in the perfused rat heart.
        Biochem J. 1961; 80: 540-547
        • Huelsmann WC
        • Siliprandi D
        • Ciman M
        • Siliprandi N
        Effect of carnitine on the oxidation of alpha-oxoglutarate to succinate in the presence of acetoacetate or pyruvate.
        Biochim Biophys Acta. 1964; 93: 166-168
        • Bassenge E
        • Wendt VE
        • Schollmeyer P
        • Bluemchen G
        • Gudbjarnason S
        • Bing RJ
        Effect of ketone bodies on cardiac metabolism.
        Am J Physiol. 1965; 208: 162-168
        • Vanoverschelde JL
        • Wijns W
        • Kolanowski J
        • Bol A
        • Decoster PM
        • Michel C
        • et al.
        Competition between palmitate and ketone bodies as fuels for the heart: study with positron emission tomography.
        Am J Physiol. 1993; 264: H701-H707
        • Ho KL
        • Zhang L
        • Wagg C
        • Al Batran R
        • Gopal K
        • Levasseur J
        • et al.
        Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
        Cardiovasc Res. 2019; 115: 1606-1616
        • Halestrap AP.
        The monocarboxylate transporter family–structure and functional characterization.
        IUBMB Life. 2012; 64: 1-9
        • Halestrap AP
        • Wilson MC.
        The monocarboxylate transporter family–role and regulation.
        IUBMB Life. 2012; 64: 109-119
        • Fukao T
        • Lopaschuk GD
        • Mitchell GA
        Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry.
        Prostag Leukotr Ess. 2004; 70: 243-251
        • Fink G
        • Desrochers S
        • Des Rosiers C
        • Garneau M
        • David F
        • Daloze T
        • et al.
        Pseudoketogenesis in the perfused rat heart.
        J Biol Chem. 1988; 263: 18036-18042
        • Russell 3rd, RR
        • Taegtmeyer H.
        Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate.
        Am J Physiol. 1991; 261: H1756-H1762
        • Russell 3rd, RR
        • Taegtmeyer H.
        Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
        J Clin Invest. 1991; 87: 384-390
        • Scrutton MC
        • Utter MF
        Pyruvate carboxylase. IX. Some properties of the activation by certain acyl derivatives of coenzyme A.
        J Biol Chem. 1967; 242: 1723-1735
        • Taegtmeyer H.
        On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load.
        Basic Res Cardiol. 1983; 78: 435-450
        • Russell 3rd, RR
        • Taegtmeyer H.
        Coenzyme A sequestration in rat hearts oxidizing ketone bodies.
        J Clin Invest. 1992; 89: 968-973
        • Ho K.L.
        • Karwi Q.G.
        • Wagg C.
        • Zhang L.
        • Vo K.
        • Altamimi T.
        • et al.
        Ketones can become the major fuel source for the heart but do not increase cardiac efficiency.
        Cardiovasc Res. 2020; https://doi.org/10.1093/cvr/cvaa143
        • Du Z
        • Shen A
        • Huang Y
        • Su L
        • Lai W
        • Wang P
        • et al.
        1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients.
        PLoS One. 2014; 9: e88102
        • Nagao M
        • Toh R
        • Irino Y
        • Mori T
        • Nakajima H
        • Hara T
        • et al.
        beta-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes.
        Biochem Biophys Res Commun. 2016; 475: 322-328
        • Horton JL
        • Davidson MT
        • Kurishima C
        • Vega RB
        • Powers JC
        • Matsuura TR
        • et al.
        The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense.
        JCI Insight. 2019; 4
        • Voros G
        • Ector J
        • Garweg C
        • Droogne W
        • Van Cleemput J
        • Peersman N
        • et al.
        Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling.
        Circ Heart Fail. 2018; 11e004953
        • Byrne NJ
        • Matsumura N
        • Maayah ZH
        • Ferdaoussi M
        • Takahara S
        • Darwesh AM
        • et al.
        Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure.
        Circ Heart Fail. 2020; 13e006277
        • Blain JM
        • Schafer H
        • Siegel AL
        • Bing RJ
        Studies on myocardial metabolism. VI. Myocardial metabolism in congestive failure.
        . Am J Med. 1956; 20: 820-833
        • Uchihashi M
        • Hoshino A
        • Okawa Y
        • Ariyoshi M
        • Kaimoto S
        • Tateishi S
        • et al.
        Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure.
        Circ Heart Fail. 2017; 10e004417
        • Schugar RC
        • Moll AR
        • Andre d'Avignon D
        • Weinheimer CJ
        • Kovacs A
        • Crawford PA
        Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling.
        Mol Metab. 2014; 3: 754-769
        • Fukao T
        • Sakurai S
        • Rolland MO
        • Zabot MT
        • Schulze A
        • Yamada K
        • et al.
        A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-ketoacid CoA transferase (SCOT) deficiency.
        Mol Genet Metab. 2006; 89: 280-282
        • Nielsen R
        • Moller N
        • Gormsen LC
        • Tolbod LP
        • Hansson NH
        • Sorensen J
        • et al.
        Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients.
        Circulation. 2019; 139: 2129-2141
        • Abdurrachim D
        • Teo XQ
        • Woo CC
        • Ong SY
        • Salleh NF
        • Lalic J
        • et al.
        Cardiac metabolic modulation upon low-carbohydrate low-protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized (13) C pyruvate, butyrate, and acetoacetate probes.
        Diabetes Obes Metab. 2018; 21: 357-365
        • Gormsen LC
        • Svart M
        • Thomsen HH
        • Sondergaard E
        • Vendelbo MH
        • Christensen N
        • et al.
        Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study.
        J Am Heart Assoc. 2017; 6e005066
        • Karwi QG
        • Zhang L
        • Wagg CS
        • Wang W
        • Ghandi M
        • Thai D
        • et al.
        Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction.
        Cardiovasc Diabetol. 2019; 18: 1
        • Karwi QG
        • Zhang L
        • Altamimi TR
        • Wagg CS
        • Patel V
        • Uddin GM
        • et al.
        Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity.
        Diabetes Obes Metab. 2019; 21: 1944-1955
        • Ingwall JS
        • Weiss RG.
        Is the failing heart energy starved? On using chemical energy to support cardiac function.
        Circ Res. 2004; 95: 135-145
        • Randle PJ
        • Garland PB
        • Hales CN
        • Newsholme EA
        The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.
        Lancet. 1963; 1: 785-789
        • Wang W
        • Zhang L
        • Battiprolu PK
        • Fukushima A
        • Nguyen K
        • Milner K
        • et al.
        Malonyl CoA decarboxylase inhibition improves cardiac function post-myocardial infarction.
        JACC Basic Transl Sci. 2019; 4: 385-400
        • Davila-Roman VG
        • Vedala G
        • Herrero P
        • de las Fuentes L
        • Rogers JG
        • Kelly DP
        • et al.
        Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy.
        J Am Coll Cardiol. 2002; 40: 271-277
        • Olson RE
        • Schwartz WB.
        Myocardial metabolism in congestive heart failure.
        Medicine (Baltimore). 1951; 30: 21-41
        • Paolisso G
        • Gambardella A
        • Galzerano D
        • D'Amore A
        • Rubino P
        • Verza M
        • et al.
        Total-body and myocardial substrate oxidation in congestive heart failure.
        Metabolism. 1994; 43: 174-179
        • How OJ
        • Aasum E
        • Kunnathu S
        • Severson DL
        • Myhre ES
        • Larsen TS
        Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts.
        Am J Physiol Heart Circ Physiol. 2005; 288: H2979-H2985
        • Ferrannini E
        • Mark M
        • Mayoux E
        CV protection in the EMPA-REG OUTCOME Trial: a “thrifty substrate” hypothesis.
        Diabetes Care. 2016; 39 (1108 LP-14)
        • Dansinger ML
        • Gleason JA
        • Griffith JL
        • Selker HP
        • Schaefer EJ
        Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial.
        JAMA. 2005; 293: 43-53
        • Kosinski C
        • Jornayvaz FR.
        Effects of ketogenic diets on cardiovascular risk factors: evidence from animal and human studies.
        Nutrients. 2017; 9
        • Al-Zaid NS
        • Dashti HM
        • Mathew TC
        • Juggi JS
        Lowcarbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia.
        Acta Cardiol. 2007; 62: 381-389
        • Krebs P
        • Fan W
        • Chen YH
        • Tobita K
        • Downes MR
        • Wood MR
        • et al.
        Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet.
        Proc Natl Acad Sci U S A. 2011; 108: 19678-19682
        • Wentz AE
        • d'Avignon DA
        • Weber ML
        • Cotter DG
        • Doherty JM
        • Kerns R
        • et al.
        Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment.
        J Biol Chem. 2010; 285: 24447-24456
        • Sankaralingam S
        • Abo Alrob O
        • Zhang L
        • Jaswal JS
        • Wagg CS
        • Fukushima A
        • et al.
        Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox.
        Diabetes. 2015; 64: 1643-1657
        • Boison D.
        New insights into the mechanisms of the ketogenic diet.
        Curr Opin Neurol. 2017; 30: 187-192
        • Hasan FM
        • Alsahli M
        • Gerich JE
        SGLT2 inhibitors in the treatment of type 2 diabetes.
        Diabetes Res Clin Pract. 2014; 104: 297-322
        • Neal B
        • Perkovic V
        • Mahaffey KW
        • de Zeeuw D
        • Fulcher G
        • Erondu N
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Wiviott SD
        • Raz I
        • Bonaca MP
        • Mosenzon O
        • Kato ET
        • Cahn A
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Zinman B
        • Wanner C
        • Lachin JM
        • Fitchett D
        • Bluhmki E
        • Hantel S
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • McMurray JJV
        • Solomon SD
        • Inzucchi SE
        • Kober L
        • Kosiborod MN
        • Martinez FA
        • et al.
        Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2019; 381: 1995-2008
        • Verma S
        • Rawat S
        • Ho KL
        • Wagg CS
        • Zhang L
        • Teoh H
        • et al.
        Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors.
        JACC Basic Transl Sci. 2018; 3: 575-587
        • Santos-Gallego CG
        • Requena-Ibanez JA
        • San Antonio R
        • Ishikawa K
        • Watanabe S
        • Picatoste B
        • et al.
        Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics.
        J Am Coll Cardiol. 2019; 73: 1931-1944
        • Byrne NJ
        • Parajuli N
        • Levasseur JL
        • Boisvenue J
        • Beker D
        • Masson G
        • et al.
        Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure.
        JACC Basic Transl Sci. 2017; 2: 347-354
        • Oshima H
        • Miki T
        • Kuno A
        • Mizuno M
        • Sato T
        • Tanno M
        • et al.
        Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and anti-oxidants in diabetic rats.
        J Pharmacol Exp Ther. 2019; 368: 524-534
        • Verma S
        • McMurray JJV.
        SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.
        Diabetologia. 2018; 61: 2108-2117
        • Lopaschuk GD
        • Verma S.
        Empagliflozin's fuel hypothesis: not so soon.
        Cell Metab. 2016; 24: 200-202
        • Yurista SR
        • Sillje HHW
        • Oberdorf-Maass SU
        • Schouten EM
        • Pavez Giani MG
        • Hillebrands JL
        • et al.
        Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction.
        Eur J Heart Fail. 2019; 21: 862-873
        • Abdurrachim D
        • Manders E
        • Nicolay K
        • Mayoux E
        • Prompers JJ
        Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice.
        Cardiovasc Res. 2018; 114: 1843-1844
        • Erondu N
        • Desai M
        • Ways K
        • Meininger G
        Diabetic ketoacidosis and related events in the Canagliflozin Type 2 Diabetes Clinical Program.
        Diabetes Care. 2015; 38: 1680-1686
        • Peters AL
        • Buschur EO
        • Buse JB
        • Cohan P
        • Diner JC
        • Hirsch IB
        Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition.
        Diabetes Care. 2015; 38: 1687-1693
      1. U.S. Food and Drug Administration. Drug Safety Communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood [Internet], 15 May 2015. Available from: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM446954.pdf.

        • Rosenstock J
        • Ferrannini E.
        Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors.
        Diabetes Care. 2015; 38: 1638-1642