Advertisement

ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging

      Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Because of the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.
      • Child J.S.
      • Levisman J.A.
      • Abbasi A.S.
      • MacAlpin R.N.
      Echocardiographic manifestations of infiltrative cardiomyopathy: a report of seven cases due to amyloid.
      • Braun S.D.
      • Lisbona R.
      • Novales-Diaz J.A.
      • Sniderman A.
      Myocardial uptake of 99mTc-phosphate tracer in amyloidosis.
      • Gillmore J.D.
      • Maurer M.S.
      • Falk R.H.
      • Merlini G.
      • Damy T.
      • Dispenzieri A.
      • et al.
      Nonbiopsy diagnosis of cardiac transthyretin amyloidosis.
      Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.
      • Alexander K.M.
      • Orav J.
      • Singh A.
      • Jacob S.A.
      • Menon A.
      • Padera R.F.
      • et al.
      Geographic disparities in reported US amyloidosis mortality from 1979 to 2015: potential underdetection of cardiac amyloidosis.
      Although advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides noninvasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Child J.S.
        • Levisman J.A.
        • Abbasi A.S.
        • MacAlpin R.N.
        Echocardiographic manifestations of infiltrative cardiomyopathy: a report of seven cases due to amyloid.
        Chest. 1976; 70: 726-731
        • Braun S.D.
        • Lisbona R.
        • Novales-Diaz J.A.
        • Sniderman A.
        Myocardial uptake of 99mTc-phosphate tracer in amyloidosis.
        Clin Nucl Med. 1979; 4: 244-245
        • Gillmore J.D.
        • Maurer M.S.
        • Falk R.H.
        • Merlini G.
        • Damy T.
        • Dispenzieri A.
        • et al.
        Nonbiopsy diagnosis of cardiac transthyretin amyloidosis.
        Circulation. 2016; 133: 2404-2412
        • Alexander K.M.
        • Orav J.
        • Singh A.
        • Jacob S.A.
        • Menon A.
        • Padera R.F.
        • et al.
        Geographic disparities in reported US amyloidosis mortality from 1979 to 2015: potential underdetection of cardiac amyloidosis.
        JAMA Cardiol. 2018; 3: 865-870
        • Sipe J.D.
        • Benson M.D.
        • Buxbaum J.N.
        • Ikeda S.I.
        • Merlini G.
        • Saraiva M.J.
        • et al.
        Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines.
        Amyloid. 2016; 23: 209-213
        • Benson M.D.
        • Buxbaum J.N.
        • Eisenberg D.S.
        • Merlini G.
        • Saraiva M.J.M.
        • Sekijima Y.
        • et al.
        Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee.
        Amyloid. 2019; 2019: 1-5
        • Muchtar E.
        • Gertz M.A.
        • Kumar S.K.
        • Lacy M.Q.
        • Dingli D.
        • Buadi F.K.
        • et al.
        Improved outcomes for newly diagnosed AL amyloidosis over the years 2000–2014: cracking the glass ceiling of early death.
        Blood. 2017; 129: 2111-2119
        • Siddiqi O.K.
        • Ruberg F.L.
        Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment.
        Trends Cardiovasc Med. 2018; 28: 10-21
        • Perlini S.
        • Salinaro F.
        • Musca F.
        • Mussinelli R.
        • Boldrini M.
        • Raimondi A.
        • et al.
        Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.
        J Hypertens. 2014; 32 (discussion 1131): 1121-1131
        • Kyle R.A.
        • Linos A.
        • Beard C.M.
        • Linke R.P.
        • Gertz M.A.
        • O'Fallon W.M.
        • et al.
        Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989.
        Blood. 1992; 79: 1817-1822
        • Pinney J.H.
        • Smith C.J.
        • Taube J.B.
        • Lachmann H.J.
        • Venner C.P.
        • Gibbs S.D.
        • et al.
        Systemic amyloidosis in England: an epidemiological study.
        Br J Haematol. 2013; 161: 525-532
        • Quock T.P.
        • Yan T.
        • Chang E.
        • Guthrie S.
        • Broder M.S.
        Epidemiology of AL amyloidosis: a real-world study using US claims data.
        Blood Adv. 2018; 2: 1046-1053
        • Gonzalez-Lopez E.
        • Gallego-Delgado M.
        • Guzzo-Merello G.
        • de Haro-Del Moral F.J.
        • Cobo-Marcos M.
        • Robles C.
        • et al.
        Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction.
        Eur Heart J. 2015; 36: 2585-2594
        • Castano A.
        • Narotsky D.L.
        • Hamid N.
        • Khalique O.K.
        • Morgenstern R.
        • DeLuca A.
        • et al.
        Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement.
        Eur Heart J. 2017; 38: 2879-2887
        • Bennani Smires Y.
        • Victor G.
        • Ribes D.
        • Berry M.
        • Cognet T.
        • Mejean S.
        • et al.
        Pilot study for left ventricular imaging phenotype of patients over 65 years old with heart failure and preserved ejection fraction: the high prevalence of amyloid cardiomyopathy.
        Int J Cardiovasc Imaging. 2016; 32: 1403-1413
        • Jacobson D.R.
        • Alexander A.A.
        • Tagoe C.
        • Buxbaum J.N.
        Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans.
        Amyloid. 2015; 22: 171-174
        • Dungu J.N.
        • Papadopoulou S.A.
        • Wykes K.
        • Mahmood I.
        • Marshall J.
        • Valencia O.
        • et al.
        Afro-Caribbean heart failure in the United Kingdom: cause, outcomes, and ATTR V122I cardiac amyloidosis.
        Circ Heart Fail. 2016; 9e003352
        • Adams D.
        • Gonzalez-Duarte A.
        • O'Riordan W.D.
        • Yang C.C.
        • Ueda M.
        • Kristen A.V.
        • et al.
        Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.
        N Engl J Med. 2018; 379: 11-21
        • Benson M.D.
        • Waddington-Cruz M.
        • Berk J.L.
        • Polydefkis M.
        • Dyck P.J.
        • Wang A.K.
        • et al.
        Inotersen treatment for patients with hereditary transthyretin amyloidosis.
        N Engl J Med. 2018; 379: 22-31
        • Richards D.B.
        • Cookson L.M.
        • Berges A.C.
        • Barton S.V.
        • Lane T.
        • Ritter J.M.
        • et al.
        Therapeutic clearance of amyloid by antibodies to serum amyloid P component.
        N Engl J Med. 2015; 373: 1106-1114
        • Comenzo R.L.
        • Vosburgh E.
        • Simms R.W.
        • Bergethon P.
        • Sarnacki D.
        • Finn K.
        • et al.
        Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: one-year follow-up in five patients.
        Blood. 1996; 88: 2801-2806
        • Maurer M.S.
        • Schwartz J.H.
        • Gundapaneni B.
        • Elliott P.M.
        • Merlini G.
        • Waddington-Cruz M.
        • et al.
        Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy.
        N Engl J Med. 2018; 379: 1007-1016
        • Pellikka P.A.
        • Holmes Jr, D.R.
        • Edwards W.D.
        • Nishimura R.A.
        • Tajik A.J.
        • Kyle R.A.
        Endomyocardial biopsy in 30 patients with primary amyloidosis and suspected cardiac involvement.
        Arch Intern Med. 1988; 148: 662-666
        • Satoskar A.A.
        • Efebera Y.
        • Hasan A.
        • Brodsky S.
        • Nadasdy G.
        • Dogan A.
        • et al.
        Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing.
        Am J Surg Pathol. 2011; 35: 1685-1690
        • Vrana J.A.
        • Gamez J.D.
        • Madden B.J.
        • Theis J.D.
        • Bergen 3rd, H.R.
        • Dogan A.
        Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens.
        Blood. 2009; 114: 4957-4959
        • Kumar S.
        • Dispenzieri A.
        • Lacy M.Q.
        • Hayman S.R.
        • Buadi F.K.
        • Colby C.
        • et al.
        Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements.
        J Clin Oncol. 2012; 30: 989-995
        • Wechalekar A.D.
        • Schonland S.O.
        • Kastritis E.
        • Gillmore J.D.
        • Dimopoulos M.A.
        • Lane T.
        • et al.
        A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis.
        Blood. 2013; 121: 3420-3427
        • Gertz M.A.
        • Comenzo R.
        • Falk R.H.
        • Fermand J.P.
        • Hazenberg B.P.
        • Hawkins P.N.
        • et al.
        Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004.
        Am J Hematol. 2005; 79: 319-328
        • Madan S.
        • Kumar S.K.
        • Dispenzieri A.
        • Lacy M.Q.
        • Hayman S.R.
        • Buadi F.K.
        • et al.
        High-dose melphalan and peripheral blood stem cell transplantation for light-chain amyloidosis with cardiac involvement.
        Blood. 2012; 119: 1117-1122
        • Grogan M.
        • Scott C.G.
        • Kyle R.A.
        • Zeldenrust S.R.
        • Gertz M.A.
        • Lin G.
        • et al.
        Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system.
        J Am Coll Cardiol. 2016; 68: 1014-1020
        • Hutt D.F.
        • Fontana M.
        • Burniston M.
        • Quigley A.M.
        • Petrie A.
        • Ross J.C.
        • et al.
        Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 1344-1350
        • Gillmore J.D.
        • Damy T.
        • Fontana M.
        • Hutchinson M.
        • Lachmann H.J.
        • Martinez-Naharro A.
        • et al.
        A new staging system for cardiac transthyretin amyloidosis.
        Eur Heart J. 2018; 39: 2799-2806
        • Chew C.
        • Ziady G.M.
        • Raphael M.J.
        • Oakley C.M.
        The functional defect in amyloid heart disease the “stiff heart” syndrome.
        Am J Cardiol. 1975; 36: 438-444
        • Falk R.H.
        • Quarta C.C.
        Echocardiography in cardiac amyloidosis.
        Heart Fail Rev. 2015; 20: 125-131
        • Ruberg F.L.
        • Maurer M.S.
        • Judge D.P.
        • Zeldenrust S.
        • Skinner M.
        • Kim A.Y.
        • et al.
        Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS).
        Am Heart J. 2012; 164: e1
        • Falk R.H.
        • Alexander K.M.
        • Liao R.
        • Dorbala S.
        AL (Light-Chain) cardiac amyloidosis: a review of diagnosis and therapy.
        J Am Coll Cardiol. 2016; 68: 1323-1341
        • Wechalekar A.D.
        • Gillmore J.D.
        • Hawkins P.N.
        Systemic amyloidosis.
        Lancet. 2016; 387: 2641-2654
        • Kirkpatrick J.N.
        • Lang R.M.
        Heart failure: hemodynamic assessment using echocardiography.
        Curr Cardiol Rep. 2008; 10: 240-246
        • Mitter S.S.
        • Shah S.J.
        • Thomas J.D.
        A test in context: E/A and E/e′ to assess diastolic dysfunction and LV filling pressure.
        J Am Coll Cardiol. 2017; 69: 1451-1464
        • Nagueh S.F.
        • Smiseth O.A.
        • Appleton C.P.
        • Byrd 3rd, B.F.
        • Dokainish H.
        • Edvardsen T.
        • et al.
        Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2016; 29: 277-314
        • Nochioka K.
        • Quarta C.C.
        • Claggett B.
        • Roca G.Q.
        • Rapezzi C.
        • Falk R.H.
        • et al.
        Left atrial structure and function in cardiac amyloidosis.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 1128-1137
        • Banypersad S.M.
        • Moon J.C.
        • Whelan C.
        • Hawkins P.N.
        • Wechalekar A.D.
        Updates in cardiac amyloidosis: a review.
        J Am Heart Assoc. 2012; 1e000364
        • Falk R.H.
        • Lee V.W.
        • Rubinow A.
        • Hood Jr, W.B.
        • Cohen A.S.
        Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis.
        Am Heart J. 1983; 51: 826-830
        • Gertz M.A.
        • Brown M.L.
        • Hauser M.F.
        • Kyle R.A.
        Utility of technetium Tc 99m pyrophosphate bone scanning in cardiac amyloidosis.
        Arch Intern Med. 1987; 147: 1039-1044
        • Hartmann A.
        • Frenkel J.
        • Hopf R.
        • Baum R.P.
        • Hör G.
        • Schneider M.
        • et al.
        Is technetium-99 m-pyrophosphate scintigraphy valuable in the diagnosis of cardiac amyloidosis?.
        Int J Card Imaging. 1990; 5: 227-231
        • Schiff S.
        • Bateman T.
        • Moffatt R.
        • Davidson R.
        • Berman D.
        Diagnostic considerations in cardiomyopathy: unique scintigraphic pattern of diffuse biventricular technetium-99m-pyrophosphate uptake in amyloid heart disease.
        Am Heart J. 1982; 103: 562-563
        • Wizenberg T.A.
        • Muz J.
        • Sohn Y.H.
        • Samlowski W.
        • Weissler A.M.
        Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis.
        Am Heart J. 1982; 103: 468-473
        • Yamamoto Y.
        • Onoguchi M.
        • Haramoto M.
        • Kodani N.
        • Komatsu A.
        • Kitagaki H.
        • et al.
        Novel method for quantitative evaluation of cardiac amyloidosis using (201)TlCl and (99m)Tc-PYP SPECT.
        Ann Nucl Med. 2012; 26: 634-643
        • Carroll J.D.
        • Gaasch W.H.
        • McAdam K.P.
        Amyloid cardiomyopathy: characterization by a distinctive voltage/mass relation.
        Am J Cardiol. 1982; 49: 9-13
        • Cueto-Garcia L.
        • Reeder G.S.
        • Kyle R.A.
        • Wood D.L.
        • Seward J.B.
        • Naessens J.
        • et al.
        Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival.
        J Am Coll Cardiol. 1985; 6: 737-743
        • Quarta C.C.
        • Solomon S.D.
        • Uraizee I.
        • Kruger J.
        • Longhi S.
        • Ferlito M.
        • et al.
        Left ventricular structure and function in transthyretin-related vs light-chain cardiac amyloidosis.
        Circulation. 2014; 129: 1840-1849
        • Rapezzi C.
        • Merlini G.
        • Quarta C.C.
        • Riva L.
        • Longhi S.
        • Leone O.
        • et al.
        Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types.
        Circulation. 2009; 120: 1203-1212
        • Siqueira-Filho A.G.
        • Cunha C.L.
        • Tajik A.J.
        • Seward J.B.
        • Schattenberg T.T.
        • Giuliani E.R.
        M-mode and two-dimensional echocardiographic features in cardiac amyloidosis.
        Circulation. 1981; 63: 188-196
        • Gonzalez-Lopez E.
        • Gagliardi C.
        • Dominguez F.
        • Quarta C.C.
        • de Haro-Del Moral F.J.
        • Milandri A.
        • et al.
        Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths.
        Eur Heart J. 2017; 38: 1895-1904
        • Buss S.J.
        • Emami M.
        • Mereles D.
        • Korosoglou G.
        • Kristen A.V.
        • Voss A.
        • et al.
        Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers.
        J Am Coll Cardiol. 2012; 60: 1067-1076
        • Koyama J.
        • Ray-Sequin P.A.
        • Falk R.H.
        Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis.
        Circulation. 2003; 107: 2446-2452
        • Koyama J.
        • Ray-Sequin P.A.
        • Davidoff R.
        • Falk R.H.
        Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis.
        Am J Cardiol. 2002; 89: 1067-1071
        • Sallach J.A.
        • Klein A.L.
        Tissue Doppler imaging in the evaluation of patients with cardiac amyloidosis.
        Curr Opin Cardiol. 2004; 19: 464-471
        • Bellavia D.
        • Abraham R.S.
        • Pellikka P.A.
        • Dispenzieri A.
        • Burnett Jr, J.C.
        • Al-Zahrani G.B.
        • et al.
        Utility of Doppler myocardial imaging, cardiac biomarkers, and clonal immunoglobulin genes to assess left ventricular performance and stratify risk following peripheral blood stem cell transplantation in patients with systemic light chain amyloidosis (Al).
        J Am Soc Echocardiogr. 2011; 24: 444-454
        • Bellavia D.
        • Abraham T.P.
        • Pellikka P.A.
        • Al-Zahrani G.B.
        • Dispenzieri A.
        • Oh J.K.
        • et al.
        Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography.
        J Am Soc Echocardiogr. 2007; 20: 1194-1202
        • Bellavia D.
        • Pellikka P.A.
        • Abraham T.P.
        • Al-Zahrani G.B.
        • Dispenzieri A.
        • Oh J.K.
        • et al.
        Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography.
        Am J Cardiol. 2008; 101: 1039-1045
        • Bellavia D.
        • Pellikka P.A.
        • Al-Zahrani G.B.
        • Abraham T.P.
        • Dispenzieri A.
        • Miyazaki C.
        • et al.
        Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study.
        J Am Soc Echocardiogr. 2010; 23: 643-652
        • Phelan D.
        • Collier P.
        • Thavendiranathan P.
        • Popovic Z.B.
        • Hanna M.
        • Plana J.C.
        • et al.
        Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis.
        Heart. 2012; 98: 1442-1448
        • Liu D.
        • Hu K.
        • Niemann M.
        • Herrmann S.
        • Cikes M.
        • Stork S.
        • et al.
        Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy.
        Circ Cardiovasc Imaging. 2013; 6: 1066-1072
        • Tendler A.
        • Helmke S.
        • Teruya S.
        • Alvarez J.
        • Maurer M.S.
        The myocardial contraction fraction is superior to ejection fraction in predicting survival in patients with AL cardiac amyloidosis.
        Amyloid. 2015; 22: 61-66
        • Arenja N.
        • Fritz T.
        • Andre F.
        • Riffel J.H.
        • Aus dem Siepen F.
        • Ochs M.
        • et al.
        Myocardial contraction fraction derived from cardiovascular magnetic resonance cine images-reference values and performance in patients with heart failure and left ventricular hypertrophy.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 1414-1422
        • Milani P.
        • Dispenzieri A.
        • Scott C.G.
        • Gertz M.A.
        • Perlini S.
        • Mussinelli R.
        • et al.
        Independent prognostic value of stroke volume index in patients with immunoglobulin light chain amyloidosis.
        Circ Cardiovasc Imaging. 2018; 11e006588
        • Kwong R.Y.
        • Heydari B.
        • Abbasi S.
        • Steel K.
        • Al-Mallah M.
        • Wu H.
        • et al.
        Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function.
        Am J Cardiol. 2015; 116: 622-629
        • El-Am E.
        • Dispenzieri A.
        • Grogan M.
        • Ammash N.
        • Melduni R.
        • White R.
        • et al.
        Outcomes of direct current cardioversion in adults with cardiac amyloidosis.
        Eur Heart J. 2018; 39 (ehy565.P2925)
        • Bellavia D.
        • Pellikka P.A.
        • Dispenzieri A.
        • Scott C.G.
        • Al-Zahrani G.B.
        • Grogan M.
        • et al.
        Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: a 5-year cohort study.
        Eur Heart J Cardiovasc Imaging. 2012; 13: 680-689
        • Rapezzi C.
        • Lorenzini M.
        • Longhi S.
        • Milandri A.
        • Gagliardi C.
        • Bartolomei I.
        • et al.
        Cardiac amyloidosis: the great pretender.
        Heart Fail Rev. 2015; 20: 117-124
        • Damy T.
        • Maurer M.S.
        • Rapezzi C.
        • Plante-Bordeneuve V.
        • Karayal O.N.
        • Mundayat R.
        • et al.
        Clinical, ECG and echocardiographic clues to the diagnosis of TTR-related cardiomyopathy.
        Open Heart. 2016; 3e000289
        • Rahman J.E.
        • Helou E.F.
        • Gelzer-Bell R.
        • Thompson R.E.
        • Kuo C.
        • Rodriguez E.R.
        • et al.
        Noninvasive diagnosis of biopsy-proven cardiac amyloidosis.
        J Am Coll Cardiol. 2004; 43: 410-415
        • Maceira A.M.
        • Joshi J.
        • Prasad S.K.
        • Moon J.C.
        • Perugini E.
        • Harding I.
        • et al.
        Cardiovascular magnetic resonance in cardiac amyloidosis.
        Circulation. 2005; 111: 186-193
        • Pandey T.
        • Jambhekar K.
        • Shaikh R.
        • Lensing S.
        • Viswamitra S.
        Utility of the inversion scout sequence (TI scout) in diagnosing myocardial amyloid infiltration.
        Int J Cardiovasc Imaging. 2013; 29: 103-112
        • Fontana M.
        • Pica S.
        • Reant P.
        • Abdel-Gadir A.
        • Treibel T.A.
        • Banypersad S.M.
        • et al.
        Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis.
        Circulation. 2015; 132: 1570-1579
        • Vogelsberg H.
        • Mahrholdt H.
        • Deluigi C.C.
        • Yilmaz A.
        • Kispert E.M.
        • Greulich S.
        • et al.
        Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy.
        J Am Coll Cardiol. 2008; 51: 1022-1030
        • Syed I.S.
        • Glockner J.F.
        • Feng D.
        • Araoz P.A.
        • Martinez M.W.
        • Edwards W.D.
        • et al.
        Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2010; 3: 155-164
        • White J.A.
        • Kim H.W.
        • Shah D.
        • Fine N.
        • Kim K.Y.
        • Wendell D.C.
        • et al.
        CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2014; 7: 143-156
        • Ruberg F.L.
        • Appelbaum E.
        • Davidoff R.
        • Ozonoff A.
        • Kissinger K.V.
        • Harrigan C.
        • et al.
        Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis.
        Am J Cardiol. 2009; 103: 544-549
        • Austin B.A.
        • Tang W.H.
        • Rodriguez E.R.
        • Tan C.
        • Flamm S.D.
        • Taylor D.O.
        • et al.
        Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2009; 2: 1369-1377
        • Karamitsos T.D.
        • Piechnik S.K.
        • Banypersad S.M.
        • Fontana M.
        • Ntusi N.B.
        • Ferreira V.M.
        • et al.
        Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2013; 6: 488-497
        • Zhao L.
        • Tian Z.
        • Fang Q.
        Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: a systematic review and meta-analysis.
        BMC Cardiovasc Disord. 2016; 16: 129
        • Fontana M.
        • Banypersad S.M.
        • Treibel T.A.
        • Maestrini V.
        • Sado D.M.
        • White S.K.
        • et al.
        Native T1 mapping in transthyretin amyloidosis.
        JACC Cardiovasc Imaging. 2014; 7: 157-165
        • Banypersad S.M.
        • Sado D.M.
        • Flett A.S.
        • Gibbs S.D.
        • Pinney J.H.
        • Maestrini V.
        • et al.
        Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study.
        Circ Cardiovasc Imaging. 2013; 6: 34-39
        • Messroghli D.R.
        • Moon J.C.
        • Ferreira V.M.
        • Grosse-Wortmann L.
        • He T.
        • Kellman P.
        • et al.
        Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).
        J Cardiovasc Magn Reson. 2018; 20: 9
        • Martinez-Naharro A.
        • Kotecha T.
        • Norrington K.
        • Boldrini M.
        • Rezk T.
        • Quarta C.
        • et al.
        Native T1 and extracellular volume in transthyretin amyloidosis.
        JACC Cardiovasc Imaging. 2019; 12: 810-819
        • Martinez-Naharro A.
        • Abdel-Gadir A.
        • Treibel T.A.
        • Zumbo G.
        • Knight D.S.
        • Rosmini S.
        • et al.
        CMR-verified regression of cardiac AL amyloid after chemotherapy.
        JACC Cardiovasc Imaging. 2018; 11: 152-154
        • Kotecha T.
        • Martinez-Naharro A.
        • Treibel T.A.
        • Francis R.
        • Nordin S.
        • Abdel-Gadir A.
        • et al.
        Myocardial edema and prognosis in amyloidosis.
        J Am Coll Cardiol. 2018; 71: 2919-2931
        • Fontana M.
        • Banypersad S.M.
        • Treibel T.A.
        • Abdel-Gadir A.
        • Maestrini V.
        • Lane T.
        • et al.
        Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study.
        Radiology. 2015; 277: 388-397
        • Dungu J.N.
        • Valencia O.
        • Pinney J.H.
        • Gibbs S.D.
        • Rowczenio D.
        • Gilbertson J.A.
        • et al.
        CMR-based differentiation of AL and ATTR cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2014; 7: 133-142
        • Antoni G.
        • Lubberink M.
        • Estrada S.
        • Axelsson J.
        • Carlson K.
        • Lindsjo L.
        • et al.
        In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET.
        J Nucl Med. 2013; 54: 213-220
        • Dorbala S.
        • Vangala D.
        • Semer J.
        • Strader C.
        • Bruyere J.R.
        • Di Carli M.F.
        • et al.
        Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1652-1662
        • Law W.P.
        • Wang W.Y.
        • Moore P.T.
        • Mollee P.N.
        • Ng A.C.
        Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study.
        J Nucl Med. 2016; 57: 1733-1739
        • Lee S.P.
        • Lee E.S.
        • Choi H.
        • Im H.J.
        • Koh Y.
        • Lee M.H.
        • et al.
        (11)C-Pittsburgh B PET imaging in cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2015; 8: 50-59
        • Osborne D.R.
        • Acuff S.N.
        • Stuckey A.
        • Wall J.S.
        A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir.
        Front Cardiovasc Med. 2015; 2: 23
        • Nakata T.
        • Shimamoto K.
        • Yonekura S.
        • Kobayashi N.
        • Sugiyama T.
        • Imai K.
        • et al.
        Cardiac sympathetic denervation in transthyretin-related familial amyloidotic polyneuropathy: detection with iodine-123-MIBG.
        J Nucl Med. 1995; 36: 1040-1042
        • Tanaka M.
        • Hongo M.
        • Kinoshita O.
        • Takabayashi Y.
        • Fujii T.
        • Yazaki Y.
        • et al.
        Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy.
        J Am Coll Cardiol. 1997; 29: 168-174
        • Pepys M.B.
        • Dyck R.F.
        • de Beer F.C.
        • Skinner M.
        • Cohen A.S.
        Binding of serum amyloid P-component (SAP) by amyloid fibrils.
        Clin Exp Immunol. 1979; 38: 284-293
        • Suhr O.B.
        • Lundgren E.
        • Westermark P.
        One mutation, two distinct disease variants: unravelling the impact of transthyretin amyloid fibril composition.
        J Intern Med. 2017; 281: 337-347
        • Cappelli F.
        • Gallini C.
        • Di Mario C.
        • Costanzo E.N.
        • Vaggelli L.
        • Tutino F.
        • et al.
        Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis.
        J Nucl Cardiol. 2019; 26: 497-504
        • Galat A.
        • Rosso J.
        • Guellich A.
        • Van Der Gucht A.
        • Rappeneau S.
        • Bodez D.
        • et al.
        Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis.
        Amyloid. 2015; 22: 210-220
        • Quarta C.C.
        • Guidalotti P.L.
        • Longhi S.
        • Pettinato C.
        • Leone O.
        • Ferlini A.
        • et al.
        Defining the diagnosis in echocardiographically suspected senile systemic amyloidosis.
        JACC Cardiovasc Imaging. 2012; 5: 755-758
        • Rapezzi C.
        • Guidalotti P.
        • Salvi F.
        • Riva L.
        • Perugini E.
        Usefulness of 99mTc-DPD scintigraphy in cardiac amyloidosis.
        J Am Coll Cardiol. 2008; 51: 1509-1510
        • Rapezzi C.
        • Quarta C.C.
        • Guidalotti P.L.
        • Pettinato C.
        • Fanti S.
        • Leone O.
        • et al.
        Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2011; 4: 659-670
        • Hutt D.F.
        • Quigley A.M.
        • Page J.
        • Hall M.L.
        • Burniston M.
        • Gopaul D.
        • et al.
        Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 1289-1298
        • Haq M.
        • Pawar S.
        • Berk J.L.
        • Miller E.J.
        • Ruberg F.L.
        Can (99m)Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis?.
        JACC Cardiovasc Imaging. 2017; 10: 713-714
        • Glaudemans A.W.
        • van Rheenen R.W.
        • van den Berg M.P.
        • Noordzij W.
        • Koole M.
        • Blokzijl H.
        • et al.
        Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis.
        Amyloid. 2014; 21: 35-44
        • Hutt D.F.
        • Gilbertson J.
        • Quigley A.M.
        • Wechalekar A.D.
        (99m)Tc-DPD scintigraphy as a novel imaging modality for identification of skeletal muscle amyloid deposition in light-chain amyloidosis.
        Amyloid. 2016; 23: 134-135
        • Bach-Gansmo T.
        • Wien T.N.
        • Londalen A.
        • Halvorsen E.
        Myocardial uptake of bone scintigraphic agents associated with increased pulmonary uptake.
        Clin Physiol Funct Imaging. 2016; 36: 237-241
        • Treglia G.
        • Glaudemans A.
        • Bertagna F.
        • Hazenberg B.P.C.
        • Erba P.A.
        • Giubbini R.
        • et al.
        Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis.
        Eur J Nucl Med Mol Imaging. 2018; 45: 1945-1955
        • Perugini E.
        • Guidalotti P.L.
        • Salvi F.
        • Cooke R.M.
        • Pettinato C.
        • Riva L.
        • et al.
        Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy.
        J Am Coll Cardiol. 2005; 46: 1076-1084
        • Bokhari S.
        • Castano A.
        • Pozniakoff T.
        • Deslisle S.
        • Latif F.
        • Maurer M.S.
        (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses.
        Circ Cardiovasc Imaging. 2013; 6: 195-201
        • Castano A.
        • Haq M.
        • Narotsky D.L.
        • Goldsmith J.
        • Weinberg R.L.
        • Morgenstern R.
        • et al.
        Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis.
        JAMA Cardiol. 2016; 1: 880-889
        • Pilebro B.
        • Arvidsson S.
        • Lindqvist P.
        • Sundstrom T.
        • Westermark P.
        • Antoni G.
        • et al.
        Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR).
        J Nucl Cardiol. 2018; 25: 240-248
        • Treibel T.A.
        • Fontana M.
        • Gilbertson J.A.
        • Castelletti S.
        • White S.K.
        • Scully P.R.
        • et al.
        Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement.
        Circ Cardiovasc Imaging. 2016; 9e005066
        • Longhi S.
        • Lorenzini M.
        • Gagliardi C.
        • Milandri A.
        • Marzocchi A.
        • Marrozzini C.
        • et al.
        Coexistence of degenerative aortic stenosis and wild-type transthyretin-related cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2016; 9: 325-327
        • Morgenstern R.
        • Yeh R.
        • Castano A.
        • Maurer M.S.
        • Bokhari S.
        (18)Fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis.
        J Nucl Cardiol. 2018; 25: 1559-1567
        • Van Der Gucht A.
        • Galat A.
        • Rosso J.
        • Guellich A.
        • Garot J.
        • Bodez D.
        • et al.
        [18F]-NaF PET/CT imaging in cardiac amyloidosis.
        J Nucl Cardiol. 2016; 23: 846-849
        • Aprile C.
        • Marinone G.
        • Saponaro R.
        • Bonino C.
        • Merlini G.
        Cardiac and pleuropulmonary AL amyloid imaging with technetium-99m labelled aprotinin.
        Eur J Nucl Med. 1995; 22: 1393-1401
        • Han S.
        • Chong V.
        • Murray T.
        • McDonagh T.
        • Hunter J.
        • Poon F.W.
        • et al.
        Preliminary experience of 99mTc-Aprotinin scintigraphy in amyloidosis.
        Eur J Haematol. 2007; 79: 494-500
        • Schaadt B.K.
        • Hendel H.W.
        • Gimsing P.
        • Jonsson V.
        • Pedersen H.
        • Hesse B.
        99mTc-aprotinin scintigraphy in amyloidosis.
        J Nucl Med. 2003; 44: 177-183
        • Hawkins P.N.
        • Lavender J.P.
        • Pepys M.B.
        Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component.
        N Engl J Med. 1990; 323: 508-513
        • Minoshima S.
        • Drzezga A.E.
        • Barthel H.
        • Bohnen N.
        • Djekidel M.
        • Lewis D.H.
        • et al.
        SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0.
        J Nucl Med. 2016; 57: 1316-1322
        • Sundaram G.S.M.
        • Dhavale D.D.
        • Prior J.L.
        • Yan P.
        • Cirrito J.
        • Rath N.P.
        • et al.
        Fluselenamyl: a novel benzoselenazole derivative for PET detection of amyloid plaques (Aβ) in Alzheimer's disease.
        Sci Rep. 2016; 6: 35636
        • Wagner T.
        • Page J.
        • Burniston M.
        • Skillen A.
        • Ross J.C.
        • Manwani R.
        • et al.
        Extracardiac (18)F-florbetapir imaging in patients with systemic amyloidosis: more than hearts and minds.
        Eur J Nucl Med Mol Imaging. 2018; 45: 1129-1138
        • Ezawa N.
        • Katoh N.
        • Oguchi K.
        • Yoshinaga T.
        • Yazaki M.
        • Sekijima Y.
        Visualization of multiple organ amyloid involvement in systemic amyloidosis using (11)C-PiB PET imaging.
        Eur J Nucl Med Mol Imaging. 2018; 45: 452-461
        • Goldstein D.S.
        Cardiac dysautonomia and survival in hereditary transthyretin amyloidosis.
        JACC Cardiovasc Imaging. 2016; 9: 1442-1445
        • Coutinho M.C.
        • Cortez-Dias N.
        • Cantinho G.
        • Conceicao I.
        • Oliveira A.
        • Bordalo e Sa A.
        • et al.
        Reduced myocardial 123-iodine metaiodobenzylguanidine uptake: a prognostic marker in familial amyloid polyneuropathy.
        Circ Cardiovasc Imaging. 2013; 6: 627-636
        • Delahaye N.
        • Dinanian S.
        • Slama M.S.
        • Mzabi H.
        • Samuel D.
        • Adams D.
        • et al.
        Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability.
        Eur J Nucl Med. 1999; 26: 416-424
        • Algalarrondo V.
        • Antonini T.
        • Theaudin M.
        • Chemla D.
        • Benmalek A.
        • Lacroix C.
        • et al.
        Cardiac dysautonomia predicts long-term survival in hereditary transthyretin amyloidosis after liver transplantation.
        JACC Cardiovasc Imaging. 2016; 9: 1432-1441
        • Pinney J.H.
        • Whelan C.J.
        • Petrie A.
        • Dungu J.
        • Banypersad S.M.
        • Sattianayagam P.
        • et al.
        Senile systemic amyloidosis: clinical features at presentation and outcome.
        J Am Heart Assoc. 2013; 2e000098
        • Dingli D.
        • Tan T.S.
        • Kumar S.K.
        • Buadi F.K.
        • Dispenzieri A.
        • Hayman S.R.
        • et al.
        Stem cell transplantation in patients with autonomic neuropathy due to primary (AL) amyloidosis.
        Neurology. 2010; 74: 913-918
        • Wechalekar A.D.
        • Gillmore J.D.
        • Bird J.
        • Cavenagh J.
        • Hawkins S.
        • Kazmi M.
        • et al.
        Guidelines on the management of AL amyloidosis.
        Br J Haematol. 2015; 168: 186-206
        • Noordzij W.
        • Glaudemans A.W.
        • van Rheenen R.W.
        • Hazenberg B.P.
        • Tio R.A.
        • Dierckx R.A.
        • et al.
        (123)I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis.
        Eur J Nucl Med Mol Imaging. 2012; 39: 1609-1617
        • Piekarski E.
        • Chequer R.
        • Algalarrondo V.
        • Eliahou L.
        • Mahida B.
        • Vigne J.
        • et al.
        Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers.
        Eur J Nucl Med Mol Imaging. 2018; 45: 1108-1118
        • Arbab A.S.
        • Koizumi K.
        • Toyama K.
        • Arai T.
        • Yoshitomi T.
        • Araki T.
        Scan findings of various myocardial SPECT agents in a case of amyloid polyneuropathy with suspected myocardial involvement.
        Ann Nucl Med. 1997; 11: 139-141
        • Delahaye N.
        • Rouzet F.
        • Sarda L.
        • Tamas C.
        • Dinanian S.
        • Plante-Bordeneuve V.
        • et al.
        Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy.
        Medicine. 2006; 85: 229-238
        • Hongo M.
        • Urushibata K.
        • Kai R.
        • Takahashi W.
        • Koizumi T.
        • Uchikawa S.
        • et al.
        Iodine-123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with AL (primary) amyloidosis.
        Am Heart J. 2002; 144: 122-129
        • Lekakis J.
        • Dimopoulos M.A.
        • Prassopoulos V.
        • Mavrikakis M.
        • Gerali S.
        • Sifakis N.
        • et al.
        Myocardial adrenergic denervation in patients with primary (AL) amyloidosis.
        Amyloid. 2003; 10: 117-120
        • Watanabe H.
        • Misu K.
        • Hirayama M.
        • Hattori N.
        • Yoshihara T.
        • Doyu M.
        • et al.
        Low cardiac 123I-MIBG uptake in late-onset familial amyloid polyneuropathy type I (TTR Met30).
        J Neurol. 2001; 248: 627-629
        • Migrino R.Q.
        • Truran S.
        • Gutterman D.D.
        • Franco D.A.
        • Bright M.
        • Schlundt B.
        • et al.
        Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins.
        J Physiol Heart Circ Physiol. 2011; 301: H2305-H2312
        • Modesto K.M.
        • Dispenzieri A.
        • Gertz M.
        • Cauduro S.A.
        • Khandheria B.K.
        • Seward J.B.
        • et al.
        Vascular abnormalities in primary amyloidosis.
        Eur Heart J. 2007; 28: 1019-1024
        • Al Suwaidi J.
        • Velianou J.L.
        • Gertz M.A.
        • Cannon 3rd, R.O.
        • Higano S.T.
        • Holmes Jr, D.R.
        • et al.
        Systemic amyloidosis presenting with angina pectoris.
        Ann Intern Med. 1999; 131: 838-841
        • Dorbala S.
        • Vangala D.
        • Bruyere Jr, J.
        • Quarta C.
        • Kruger J.
        • Padera R.
        • et al.
        Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis.
        JACC Heart Fail. 2014; 2: 358-367
        • Falk R.H.
        Diagnosis and management of the cardiac amyloidoses.
        Circulation. 2005; 112: 2047-2060
        • Barros-Gomes S.
        • Williams B.
        • Nhola L.F.
        • Grogan M.
        • Maalouf J.F.
        • Dispenzieri A.
        • et al.
        Prognosis of light chain amyloidosis with preserved LVEF: added value of 2D speckle-tracking echocardiography to the current prognostic staging system.
        JACC Cardiovasc Imaging. 2017; 10: 398-407
        • Bodez D.
        • Ternacle J.
        • Guellich A.
        • Galat A.
        • Lim P.
        • Radu C.
        • et al.
        Prognostic value of right ventricular systolic function in cardiac amyloidosis.
        Amyloid. 2016; 23: 158-167
        • Cappelli F.
        • Porciani M.C.
        • Bergesio F.
        • Perlini S.
        • Attana P.
        • Moggi Pignone A.
        • et al.
        Right ventricular function in AL amyloidosis: characteristics and prognostic implication.
        Eur Heart J Cardiovasc Imaging. 2012; 13: 416-422
        • Damy T.
        • Jaccard A.
        • Guellich A.
        • Lavergne D.
        • Galat A.
        • Deux J.F.
        • et al.
        Identification of prognostic markers in transthyretin and AL cardiac amyloidosis.
        Amyloid. 2016; 23: 194-202
        • Hu K.
        • Liu D.
        • Nordbeck P.
        • Cikes M.
        • Stork S.
        • Kramer B.
        • et al.
        Impact of monitoring longitudinal systolic strain changes during serial echocardiography on outcome in patients with AL amyloidosis.
        Int J Cardiovasc Imaging. 2015; 31: 1401-1412
        • Koyama J.
        • Falk R.H.
        Prognostic significance of strain Doppler imaging in light-chain amyloidosis.
        JACC Cardiovasc Imaging. 2010; 3: 333-342
        • Koyama J.
        • Ray-Sequin P.A.
        • Falk R.H.
        Prognostic significance of ultrasound myocardial tissue characterization in patients with cardiac amyloidosis.
        Circulation. 2002; 106: 556-561
        • Kristen A.V.
        • Scherer K.
        • Buss S.
        • aus dem Siepen F.
        • Haufe S.
        • Bauer R.
        • et al.
        Noninvasive risk stratification of patients with transthyretin amyloidosis.
        JACC Cardiovasc Imaging. 2014; 7: 502-510
        • Liu D.
        • Hu K.
        • Herrmann S.
        • Cikes M.
        • Ertl G.
        • Weidemann F.
        • et al.
        Value of tissue Doppler-derived Tei index and two-dimensional speckle tracking imaging derived longitudinal strain on predicting outcome of patients with light-chain cardiac amyloidosis.
        Int J Cardiovasc Imaging. 2017; 33: 837-845
        • Liu D.
        • Hu K.
        • Stork S.
        • Herrmann S.
        • Kramer B.
        • Cikes M.
        • et al.
        Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction.
        PloS One. 2014; 9e115910
        • Migrino R.Q.
        • Harmann L.
        • Christenson R.
        • Hari P.
        Clinical and imaging predictors of 1-year and long-term mortality in light chain (AL) amyloidosis: a 5-year follow-up study.
        Heart Vessel. 2014; 29: 793-800
        • Mohty D.
        • Petitalot V.
        • Magne J.
        • Fadel B.M.
        • Boulogne C.
        • Rouabhia D.
        • et al.
        Left atrial function in patients with light chain amyloidosis: a transthoracic 3D speckle tracking imaging study.
        J Cardiol. 2018; 71: 419-427
        • Mohty D.
        • Pibarot P.
        • Dumesnil J.G.
        • Darodes N.
        • Lavergne D.
        • Echahidi N.
        • et al.
        Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis.
        Arch Cardiovasc Dis. 2011; 104: 611-618
        • Mohty D.
        • Pradel S.
        • Magne J.
        • Fadel B.
        • Boulogne C.
        • Petitalot V.
        • et al.
        Prevalence and prognostic impact of left-sided valve thickening in systemic light-chain amyloidosis.
        Clin Res Cardiol. 2017; 106: 331-340
        • Ochs M.M.
        • Riffel J.
        • Kristen A.V.
        • Hegenbart U.
        • Schonland S.
        • Hardt S.E.
        • et al.
        Anterior aortic plane systolic excursion: a novel indicator of transplant-free survival in systemic light-chain amyloidosis.
        J Am Soc Echocardiogr. 2016; 29: 1188-1196
        • Riffel J.H.
        • Mereles D.
        • Emami M.
        • Korosoglou G.
        • Kristen A.V.
        • Aurich M.
        • et al.
        Prognostic significance of semiautomatic quantification of left ventricular long axis shortening in systemic light-chain amyloidosis.
        Amyloid. 2015; 22: 45-53
        • Senapati A.
        • Sperry B.W.
        • Grodin J.L.
        • Kusunose K.
        • Thavendiranathan P.
        • Jaber W.
        • et al.
        Prognostic implication of relative regional strain ratio in cardiac amyloidosis.
        Heart. 2016; 102: 748-754
        • Siepen F.A.D.
        • Bauer R.
        • Voss A.
        • Hein S.
        • Aurich M.
        • Riffel J.
        • et al.
        Predictors of survival stratification in patients with wild-type cardiac amyloidosis.
        Clin Res Cardiol. 2018; 107: 158-169
        • Tei C.
        • Dujardin K.S.
        • Hodge D.O.
        • Kyle R.A.
        • Tajik A.J.
        • Seward J.B.
        Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis.
        J Am Coll Cardiol. 1996; 28: 658-664
        • Kwong R.Y.
        • Jerosch-Herold M.
        CMR and amyloid cardiomyopathy: are we getting closer to the biology?.
        JACC Cardiovasc Imaging. 2014; 7: 166-168
        • Mekinian A.
        • Lions C.
        • Leleu X.
        • Duhamel A.
        • Lamblin N.
        • Coiteux V.
        • et al.
        Prognosis assessment of cardiac involvement in systemic AL amyloidosis by magnetic resonance imaging.
        Am J Med. 2010; 123: 864-868
        • Kellman P.
        • Arai A.E.
        • McVeigh E.R.
        • Aletras A.H.
        Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement.
        Magn Reson Med. 2002; 47: 372-383
        • Fontana M.
        • Treibel T.A.
        • Martinez-Naharro A.
        • Rosmini S.
        • Kwong R.Y.
        • Gillmore J.D.
        • et al.
        A case report in cardiovascular magnetic resonance: the contrast agent matters in amyloid.
        BMC Med Imaging. 2017; 17: 3
        • Raina S.
        • Lensing S.Y.
        • Nairooz R.S.
        • Pothineni N.V.
        • Hakeem A.
        • Bhatti S.
        • et al.
        Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis.
        JACC Cardiovasc Imaging. 2016; 9: 1267-1277
        • Banypersad S.M.
        • Fontana M.
        • Maestrini V.
        • Sado D.M.
        • Captur G.
        • Petrie A.
        • et al.
        T1 mapping and survival in systemic light-chain amyloidosis.
        Eur Heart J. 2015; 36: 244-251
        • Martinez-Naharro A.
        • Treibel T.A.
        • Abdel-Gadir A.
        • Bulluck H.
        • Zumbo G.
        • Knight D.S.
        • et al.
        Magnetic resonance in transthyretin cardiac amyloidosis.
        J Am Coll Cardiol. 2017; 70: 466-477
        • Castano A.
        • Haq M.
        • Narotsky D.L.
        • Goldsmith J.
        • Weinberg R.L.
        • Morgenstern R.
        • et al.
        Multicenter study of planar technetium 99m pyrophosphate cardiac imaging.
        JAMA Cardiol. 2016; 1: 880-889
        • Kristen A.V.
        • Haufe S.
        • Schonland S.O.
        • Hegenbart U.
        • Schnabel P.A.
        • Rocken C.
        • et al.
        Skeletal scintigraphy indicates disease severity of cardiac involvement in patients with senile systemic amyloidosis.
        Int J Cardiol. 2013; 164: 179-184
        • Vranian M.N.
        • Sperry B.W.
        • Hanna M.
        • Hachamovitch R.
        • Ikram A.
        • Brunken R.C.
        • et al.
        Technetium pyrophosphate uptake in transthyretin cardiac amyloidosis: associations with echocardiographic disease severity and outcomes.
        J Nucl Cardiol. 2018; 25: 1247-1256
        • Sperry B.W.
        • Tamarappoo B.K.
        • Oldan J.D.
        • Javed O.
        • Culver D.A.
        • Brunken R.
        • et al.
        Prognostic impact of extent, severity, and heterogeneity of abnormalities on (18)F-FDG PET scans for suspected cardiac sarcoidosis.
        JACC Cardiovasc Imaging. 2018; 11: 336-345
        • Merlini G.
        • Lousada I.
        • Ando Y.
        • Dispenzieri A.
        • Gertz M.A.
        • Grogan M.
        • et al.
        Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis.
        Leukemia. 2016; 30: 1979-1986
        • Fitzgerald B.T.
        • Bashford J.
        • Newbigin K.
        • Scalia G.M.
        Regression of cardiac amyloidosis following stem cell transplantation: a comparison between echocardiography and cardiac magnetic resonance imaging in long-term survivors.
        Int J Cardiol Heart Vasc. 2017; 14: 53-57
        • Dubrey S.W.
        • Burke M.M.
        • Khaghani A.
        • Hawkins P.N.
        • Yacoub M.H.
        • Banner N.R.
        Long term results of heart transplantation in patients with amyloid heart disease.
        Heart. 2001; 85: 202-207
        • Liepnieks J.J.
        • Benson M.D.
        Progression of cardiac amyloid deposition in hereditary transthyretin amyloidosis patients after liver transplantation.
        Amyloid. 2007; 14: 277-282
        • Okamoto S.
        • Zhao Y.
        • Lindqvist P.
        • Backman C.
        • Ericzon B.G.
        • Wijayatunga P.
        • et al.
        Development of cardiomyopathy after liver transplantation in Swedish hereditary transthyretin amyloidosis (ATTR) patients.
        Amyloid. 2011; 18: 200-205
        • Olofsson B.O.
        • Backman C.
        • Karp K.
        • Suhr O.B.
        Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy, Portuguese type.
        Transplantation. 2002; 73: 745-751
        • Comenzo R.L.
        • Vosburgh E.
        • Falk R.H.
        • Sanchorawala V.
        • Reisinger J.
        • Dubrey S.
        • et al.
        Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients.
        Blood. 1998; 91: 3662-3670
        • Patel M.R.
        • White R.D.
        • Abbara S.
        • Bluemke D.A.
        • Herfkens R.J.
        • Picard M.
        • et al.
        2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force.
        J Am Coll Cardiol. 2013; 61: 2207-2231
        • Castano A.
        • DeLuca A.
        • Weinberg R.
        • Pozniakoff T.
        • Blaner W.S.
        • Pirmohamed A.
        • et al.
        Serial scanning with technetium pyrophosphate ((99m)Tc-PYP) in advanced ATTR cardiac amyloidosis.
        J Nucl Cardiol. 2016; 23: 1355-1363
        • Azevedo Coutinho M.D.C.
        • Cortez-Dias N.
        • Cantinho G.
        • Conceicao I.
        • Guimaraes T.
        • Lima da Silva G.
        • et al.
        Progression of myocardial sympathetic denervation assessed by (123)I-MIBG imaging in familial amyloid polyneuropathy and the effect of liver transplantation.
        Rev Port Cardiol. 2017; 36: 333-340
        • Lin G.
        • Dispenzieri A.
        • Kyle R.
        • Grogan M.
        • Brady P.A.
        Implantable cardioverter defibrillators in patients with cardiac amyloidosis.
        J Cardiovasc Electrophysiol. 2013; 24: 793-798
        • Varr B.C.
        • Zarafshar S.
        • Coakley T.
        • Liedtke M.
        • Lafayette R.A.
        • Arai S.
        • et al.
        Implantable cardioverter-defibrillator placement in patients with cardiac amyloidosis.
        Heart Rhythm. 2014; 11: 158-162
        • Lang R.M.
        • Badano L.P.
        • Mor-Avi V.
        • Afilalo J.
        • Armstrong A.
        • Ernande L.
        • et al.
        Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 233-270
        • Rudski L.G.
        • Lai W.W.
        • Afilalo J.
        • Hua L.
        • Handschumacher M.D.
        • Chandrasekaran K.
        • et al.
        Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography.
        J Am Soc Echocardiogr. 2010; 23: 685-713
        • Cianciulli T.F.
        • Saccheri M.C.
        • Lax J.A.
        • Bermann A.M.
        • Ferreiro D.E.
        Two-dimensional speckle tracking echocardiography for the assessment of atrial function.
        World J Cardiol. 2010; 2: 163-170
        • Kowallick J.T.
        • Lotz J.
        • Hasenfuss G.
        • Schuster A.
        Left atrial physiology and pathophysiology: role of deformation imaging.
        World J Cardiol. 2015; 7: 299-305
        • Mor-Avi V.
        • Lang R.M.
        • Badano L.P.
        • Belohlavek M.
        • Cardim N.M.
        • Derumeaux G.
        • et al.
        Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography.
        J Am Soc Echocardiogr. 2011; 24: 277-313
        • Voigt J.U.
        • Pedrizzetti G.
        • Lysyansky P.
        • Marwick T.H.
        • Houle H.
        • Baumann R.
        • et al.
        Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.
        J Am Soc Echocardiogr. 2015; 28: 183-193
        • Kramer C.M.
        • Barkhausen J.
        • Flamm S.D.
        • Kim R.J.
        • Nagel E.
        Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized P. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update.
        J Cardiovasc Magn Reson. 2013; 15: 91
        • Moon J.C.
        • Messroghli D.R.
        • Kellman P.
        • Piechnik S.K.
        • Robson M.D.
        • Ugander M.
        • et al.
        Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement.
        J Cardiovasc Magn Reson. 2013; 15: 92
        • Zumbo G.
        • Barton S.V.
        • Thompson D.
        • Sun M.
        • Abdel-Gadir A.
        • Treibel T.A.
        • et al.
        Extracellular volume with bolus-only technique in amyloidosis patients: diagnostic accuracy, correlation with other clinical cardiac measures, and ability to track changes in amyloid load over time.
        J Magn Reson Imaging. 2018; 47: 1677-1684
        • Neilan T.G.
        • Coelho-Filho O.R.
        • Shah R.V.
        • Abbasi S.A.
        • Heydari B.
        • Watanabe E.
        • et al.
        Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions.
        JACC Cardiovasc Imaging. 2013; 6: 672-683
        • Flett A.S.
        • Hayward M.P.
        • Ashworth M.T.
        • Hansen M.S.
        • Taylor A.M.
        • Elliott P.M.
        • et al.
        Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans.
        Circulation. 2010; 122: 138-144
        • Treibel T.A.
        • Fontana M.
        • Maestrini V.
        • Castelletti S.
        • Rosmini S.
        • Simpson J.
        • et al.
        Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling.
        JACC Cardiovasc Imaging. 2016; 9: 54-63
        • Li R.
        • Yang Z.G.
        • Wen L.Y.
        • Liu X.
        • Xu H.Y.
        • Zhang Q.
        • et al.
        Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis: assessment with 3T cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2016; 18: 16
        • Flotats A.
        • Carrio I.
        • Agostini D.
        • Le Guludec D.
        • Marcassa C.
        • Schafers M.
        • et al.
        Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology.
        Eur J Nucl Med Mol Imaging. 2010; 37: 1802-1812
        • Inoue Y.
        • Abe Y.
        • Kikuchi K.
        • Matsunaga K.
        • Masuda R.
        • Nishiyama K.
        Correction of collimator-dependent differences in the heart-to-mediastinum ratio in (123)I-metaiodobenzylguanidine cardiac sympathetic imaging: determination of conversion equations using point-source imaging.
        J Nucl Cardiol. 2017; 24: 1725-1736
        • Nakajima K.
        • Matsumoto N.
        • Kasai T.
        • Matsuo S.
        • Kiso K.
        • Okuda K.
        Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database.
        Ann Nucl Med. 2016; 30: 188-199

      Further Reading

        • Kawel N.
        • Turkbey E.B.
        • Carr J.J.
        • Eng J.
        • Gomes A.S.
        • Hundley W.G.
        • et al.
        Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis.
        Circ Cardiovasc Imaging. 2012; 5: 500-508
        • Kawel-Boehm N.
        • Maceira A.
        • Valsangiacomo-Buechel E.R.
        • Vogel-Claussen J.
        • Turkbey E.B.
        • Williams R.
        • et al.
        Normal values for cardiovascular magnetic resonance in adults and children.
        J Cardiovasc Magn Reson. 2015; 17: 29
        • Dorbala S.
        • Bokhari S.
        • Miller E.
        • Bullock-Palmer R.
        • Soman P.
        • Thompson R.
        ASNC Practice Points: 99mTechnetium-pyrophosphate imaging for transthyretin cardiac amyloidosis.
        American Society of Nuclear Cardiology, 2019 (Available at:)
        • Kristen A.V.
        • Perz J.B.
        • Schonland S.O.
        • Hansen A.
        • Hegenbart U.
        • Sack F.U.
        • et al.
        Rapid progression of left ventricular wall thickness predicts mortality in cardiac light-chain amyloidosis.
        J Heart Lung Transplant. 2007; 26: 1313-1319
        • Maceira A.M.
        • Prasad S.K.
        • Hawkins P.N.
        • Roughton M.
        • Pennell D.J.
        Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis.
        J Cardiovasc Magn Reson. 2008; 10: 54
        • Migrino R.Q.
        • Christenson R.
        • Szabo A.
        • Bright M.
        • Truran S.
        • Hari P.
        Prognostic implication of late gadolinium enhancement on cardiac MRI in light chain (AL) amyloidosis on long term follow up.
        BMC Med Phys. 2009; 9: 5
        • Lin L.
        • Li X.
        • Feng J.
        • Shen K.N.
        • Tian Z.
        • Sun J.
        • et al.
        The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis.
        J Cardiovasc Magn Reson. 2018; 20: 2
        • Lee V.W.
        • Caldarone A.G.
        • Falk R.H.
        • Rubinow A.
        • Cohen A.S.
        Amyloidosis of heart and liver: comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate for detection.
        Radiology. 1983; 148: 239-242
        • Eriksson P.
        • Backman C.
        • Bjerle P.
        • Eriksson A.
        • Holm S.
        • Olofsson B.O.
        Non-invasive assessment of the presence and severity of cardiac amyloidosis: a study in familial amyloidosis with polyneuropathy by cross sectional echocardiography and technetium-99m pyrophosphate scintigraphy.
        Br Heart J. 1984; 52: 321-326
        • Leinonen H.
        • Totterman K.J.
        • Korppi-Tommola T.
        • Korhola O.
        Negative myocardial technetium-99m pyrophosphate scintigraphy in amyloid heart disease associated with type AA systemic amyloidosis.
        Am J Cardiol. 1984; 53: 380-381
        • Falk R.H.
        • Lee V.W.
        • Rubinow A.
        • Skinner M.
        • Cohen A.S.
        Cardiac technetium-99m pyrophosphate scintigraphy in familial amyloidosis.
        Am Heart J. 1984; 54: 1150-1151
        • Hongo M.
        • Hirayama J.
        • Fujii T.
        • Yamada H.
        • Okubo S.
        • Kusama S.
        • et al.
        Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: a study with familial amyloid polyneuropathy.
        Am Heart J. 1987; 113: 654-662
        • Goldstein S.A.
        • Lindsay Jr, J.
        • Chandeysson P.L.
        • Nolan N.G.
        Usefulness of technetium pyrophosphate scintigraphy in demonstrating cardiac amyloidosis in persons aged 85 years and older.
        Am J Cardiol. 1989; 63: 752-753
        • Fournier C.
        • Grimon G.
        • Rinaldi J.P.
        • et al.
        Usefulness of technetium-99m pyrophosphate myocardial scintigraphy in amyloid polyneuropathy and correlation with echocardiography.
        Am J Cardiol. 1993; 72: 854-857
        • Puille M.
        • Altland K.
        • Linke R.P.
        • Steen-Müller M.K.
        • Kiett R.
        • Steiner D.
        • et al.
        99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy.
        Eur J Nucl Med Mol Imaging. 2002; 29: 376-379
        • Rapezzi C.
        • Quarta C.C.
        • Guidalotti P.L.
        • Longhi S.
        • Pettinato C.
        • Leone A.
        • et al.
        Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy.
        Eur J Nucl Med Mol Imaging. 2011; 38: 470-478
        • de Haro-del Moral F.J.
        • Sanchez-Lajusticia A.
        • Gomez-Bueno M.
        • Garcia-Pavia P.
        • Salas-Anton C.
        • Segovia-Cubero J.
        Role of cardiac scintigraphy with 99mTc-DPD in the differentiation of cardiac amyloidosis subtype.
        Rev Esp Cardiol (Engl Ed). 2012; 65: 440-446
        • Ferreira S.G.
        • Rocha A.M.
        • Moreira do Nascimento O.J.
        • Mesquita C.T.
        Role of 99mTc-DPD scintigraphy on discrimination of familial cardiac amyloidosis.
        Int J Cardiol. 2016; 203: 885-887
        • Pilebro B.
        • Suhr O.B.
        • Naslund U.
        • Westermark P.
        • Lindqvist P.
        • Sundstrom T.
        (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis.
        Ups J Med Sci. 2016; 121: 17-24
        • Abulizi M.
        • Cottereau A.S.
        • Guellich A.
        • Vandeventer S.
        • Galat A.
        • Van Der Gucht A.
        • et al.
        Early-phase myocardial uptake intensity of 99mTc-HMDP vs 99mTc-DPD in patients with hereditary transthyretin-related cardiac amyloidosis.
        J Nucl Cardiol. 2018; 25: 217-222
        • Galat A.
        • Van der Gucht A.
        • Guellich A.
        • Bodez D.
        • Cottereau A.S.
        • Guendouz S.
        • et al.
        Early phase 99Tc-HMDP scintigraphy for the diagnosis and typing of cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2017; 10: 601-603
        • Van Der Gucht A.
        • Cottereau A.S.
        • Abulizi M.
        • Guellich A.
        • Blanc-Durand P.
        • Israel J.M.
        • et al.
        Apical sparing pattern of left ventricular myocardial (99m)Tc-HMDP uptake in patients with transthyretin cardiac amyloidosis.
        J Nucl Cardiol. 2018; 25: 2072-2079
        • Moore P.T.
        • Burrage M.K.
        • Mackenzie E.
        • Law W.P.
        • Korczyk D.
        • Mollee P.
        The utility of (99m)Tc-DPD scintigraphy in the diagnosis of cardiac amyloidosis: an Australian experience.
        Heart Lung Circ. 2017; 26: 1183-1190
        • Longhi S.
        • Guidalotti P.L.
        • Quarta C.C.
        • Gagliardi C.
        • Milandri A.
        • Lorenzini M.
        • et al.
        Identification of TTR-related subclinical amyloidosis with 99mTc-DPD scintigraphy.
        JACC Cardiovasc Imaging. 2014; 7: 531-532
        • Galat A.
        • Guellich A.
        • Bodez D.
        • Slama M.
        • Dijos M.
        • Zeitoun D.M.
        • et al.
        Aortic stenosis and transthyretin cardiac amyloidosis: the chicken or the egg?.
        Eur Heart J. 2016; 37: 3525-3531
        • Sperry B.W.
        • Vranian M.N.
        • Tower-Rader A.
        • Hachamovitch R.
        • Hanna M.
        • Brunken R.
        • et al.
        Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality.
        JACC Cardiovasc Imaging. 2018; 11: 234-242
        • Delahaye N.
        • Le Guludec D.
        • Dinanian S.
        • Delforge J.
        • Slama M.S.
        • Sarda L.
        • et al.
        Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy.
        Circulation. 2001; 104: 2911-2926
        • Coutinho C.A.
        • Conceicao I.
        • Almeida A.
        • Cantinho G.
        • Sargento L.
        • Vagueiro M.C.
        Early detection of sympathetic myocardial denervation in patients with familial amyloid polyneuropathy type I.
        Rev Port Cardiol. 2004; 23: 201-211
        • Algalarrondo V.
        • Eliahou L.
        • Thierry I.
        • Bouzeman A.
        • Dasoveanu M.
        • Sebag C.
        • et al.
        Circadian rhythm of blood pressure reflects the severity of cardiac impairment in familial amyloid polyneuropathy.
        Arch Cardiovasc Dis. 2012; 105: 281-290
        • Takahashi R.
        • Ono K.
        • Shibata S.
        • Nakamura K.
        • Komatsu J.
        • Ikeda Y.
        • et al.
        Efficacy of diflunisal on autonomic dysfunction of late-onset familial amyloid polyneuropathy (TTR Val30Met) in a Japanese endemic area.
        J Neurol Sci. 2014; 345: 231-235
        • Henzlova M.J.
        • Duvall W.L.
        • Einstein A.J.
        • Travin M.I.
        • Verberne H.J.
        ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers.
        J Nucl Cardiol. 2016; 23: 606-639