Advertisement

Dietary Nitrate Increases VO2peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Ejection Fraction

Published:September 12, 2017DOI:https://doi.org/10.1016/j.cardfail.2017.09.004

      Highlights

      • Acute dietary nitrate (NO3) intake increased peak oxygen uptake in patients with heart failure (HF) by 8 ± 2% (P < .05).
      • Time to fatigue during exercise improved by 7 ± 3% (P < .05).
      • Dietary NO3 may be a means of enhancing exercise capacity in patients with HF.

      Abstract

      Background

      Patients with heart failure with reduced ejection fraction (HFrEF) exhibit lower efficiency, dyspnea, and diminished peak oxygen uptake (VO2peak) during exercise. Dietary nitrate (NO3), a source of nitric oxide (NO), has improved these measures in some studies of other populations. We determined the effects of acute NO3 ingestion on exercise responses in 8 patients with HFrEF using a randomized, double-blind, placebo-controlled, crossover design.

      Methods and Results

      Plasma NO3, nitrite (NO2), and breath NO were measured at multiple time points and respiratory gas exchange was determined during exercise after ingestion of beetroot juice containing or devoid of 11.2 mmol of NO3. NO3 intake increased (P < .05–0.001) plasma NO3 and NO2 and breath NO by 1469 ± 245%, 105 ± 34%, and 60 ± 18%, respectively. Efficiency and ventilation during exercise were unchanged. However, NO3 ingestion increased (P < .05) VO2peak by 8 ± 2% (ie, from 21.4 ± 2.1 to 23.0 ± 2.3 mL.min−1.kg−1). Time to fatigue improved (P < .05) by 7 ± 3 % (ie, from 582 ± 84 to 612 ± 81 seconds).

      Conclusions

      Acute dietary NO3 intake increases VO2peak and performance in patients with HFrEF. These data, in conjunction with our recent data demonstrating that dietary NO3 also improves muscle contractile function, suggest that dietary NO3 supplementation may be a valuable means of enhancing exercise capacity in this population.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Heart Association Statistics Committee and Stroke Statistics Subcommittee
        Heart disease and stroke statistics—2017 update: a report from the American Heart Association.
        Circulation. 2017; 135: e146-e603
        • Haykowsky M.J.
        • Kitzman D.W.
        Exercise physiology in heart failure and preserved ejection fraction.
        Heart Fail Clin. 2014; 10: 445-452
        • Haykowsky M.J.
        • Tomczak C.R.
        • Scott J.M.
        • Paterson D.I.
        • Kitzman D.W.
        Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction.
        J Appl Physiol. 2015; 119: 739-744
        • Coggan A.R.
        • Peterson L.R.
        Dietary nitrate and skeletal muscle contractile function in heart failure.
        Curr Heart Fail Rep. 2016; 13: 158-165
        • Hülsmann M.
        • Quittan M.
        • Berger R.
        • Crevenna R.
        • Springer C.
        • Nuhr M.
        • et al.
        Muscle strength as a predictor of long-term survival in severe congestive heart failure.
        Eur J Heart Fail. 2004; 6: 101-107
        • Arena R.
        • Myers J.
        • Aslam S.S.
        • Varughese E.B.
        • Peberdy M.A.
        Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison.
        Am Heart J. 2004; 147: 354-360
        • Corrá U.
        • Giordana A.
        • Mezzani A.
        • Gnemmi M.
        • Pistono M.
        • Caruso R.
        • et al.
        Cardiopulmonary exercise testing and prognosis in heart failure due to systolic dysfunction: a validation study of the European Society of Cardiology Guidelines and Recommendations (2008) and further developments.
        Eur J Prev Cardiol. 2012; 18: 32-40
        • Keteyian S.J.
        • Patel M.
        • Kraus W.E.
        • Brawner C.A.
        • McConnell T.R.
        • Piña I.L.
        • et al.
        Variables measured during cardiopulmonary exercise testing as predictors of mortality in chronic systolic heart failure.
        J Am Coll Cardiol. 2016; 67: 780-789
        • Reger M.
        • Peterman J.E.
        • Kram R.
        • Byrnes W.C.
        Exercise efficiency of low power output cycling.
        Scand J Med Sci Sports. 2013; 23: 713-721
        • Coggan A.R.
        • Leibowitz J.L.
        • Spearie C.A.
        • Kadkhodayan A.
        • Thomas D.P.
        • Ramamurthy S.
        • et al.
        Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: a double-blind, placebo-controlled, randomized trial.
        Circ Heart Fail. 2015; 8: 914-920
        • Coggan A.R.
        • Leibowitz J.L.
        • Kadkhodayan A.
        • Thomas D.T.
        • Ramamurthy S.
        • Spearie C.A.
        • et al.
        Effect of acute dietary nitrate intake on knee extensor speed and power in healthy men and women.
        Nitric Oxide. 2015; 48: 16-21
        • Rimer E.G.
        • Peterson L.R.
        • Coggan A.R.
        • Martin J.C.
        Acute dietary nitrate supplementation increases maximal cycling power in athletes.
        Int J Sports Physiol Perform. 2016; 11: 715-720
        • Tang L.
        • Wang H.
        • Ziolo M.T.
        Targeting NOS as a therapeutic approach for heart failure.
        Pharmacol Ther. 2014; 142: 306-315
        • Münzel T.
        • Gori T.
        • Keaney Jr, J.F.
        • Maack C.
        • Daiber A.
        Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications.
        Eur Heart J. 2015; 36: 2555-2564
        • Wray D.W.
        • Amann M.
        • Richardson R.S.
        Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction.
        Heart Fail Rev. 2017; 22: 149-166
        • Adachi H.
        • Nguyen P.H.
        • Belardinelli R.
        • Hunter D.
        • Jung T.
        • Wasserman K.
        Nitric oxide production during exercise in chronic heart failure.
        Am Heart J. 1997; 134: 196-202
        • Bussotti M.
        • Andreini D.
        • Agostoni P.
        Exercise-induced changes in exhaled nitric oxide in heart failure.
        Eur J Heart Fail. 2004; 6: 551-554
        • Clini E.
        • Volterrani M.
        • Pagani M.
        • Bianchi L.
        • Porta R.
        • Gile L.S.
        • et al.
        Endogenous nitric oxide in patients with chronic heart failure (CHF): relation to functional impairment and nitrate-containing therapies.
        Int J Cardiol. 2000; 73: 123-130
        • Maher A.R.
        • Arif S.
        • Madhani M.
        • Abozguia K.
        • Ahmed I.
        • Fernandez B.O.
        • et al.
        Impact of chronic congestive heart failure on pharmacokinetics and vasomotor effects of infused nitrite.
        Br J Pharmacol. 2013; 169: 659-670
        • Wennmalm A.
        • Benthin G.
        • Edlund A.
        • Jungersten L.
        • Kieler-Jensen N.
        • Lundin S.
        • et al.
        Metabolism and excretion of nitric oxide in humans. An experimental and clinical study.
        Circ Res. 1993; 73: 1121-1127
        • Katz S.D.
        • Khan T.
        • Zeballos G.A.
        • Mathew L.
        • Potharlanka P.
        • Knecht M.
        • et al.
        Decreased activity of the L–arginine-nitric oxide metabolic pathway in patients with congestive heart failure.
        Circulation. 1999; 99: 2113-2117
        • Rector T.S.
        • Bank A.J.
        • Mullen K.A.
        • Tschumperlin L.K.
        • Sih R.
        • Pillai K.
        • et al.
        Randomized, placebo-controlled study of supplemental oral L-arginine in patients with heart failure.
        Circulation. 1996; 93: 2135-2141
        • Koch C.D.
        • Gladwin M.T.
        • Freeman B.A.
        • Lundberg J.O.
        • Weitzberg E.
        • Morris A.
        Enterosalivary nitrate metabolism and the microbiome: intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health.
        Free Radic Biol Med. 2017; 105: 48-67
        • Shiva S.
        Nitrite: a physiological store of nitric oxide and modulator of mitochondrial function.
        Redox Biol. 2013; 1: 40-44
        • Jones A.M.
        Dietary nitrate supplementation and exercise performance.
        Sports Med. 2014; 44: S35-S45
        • Eggebeen J.
        • Kim-Shapiro D.B.
        • Haykowsky M.
        • Morgan T.M.
        • Basu S.
        • Brubaker P.
        • et al.
        One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction.
        JACC Heart Fail. 2016; 4: 428-437
        • Zamani P.
        • Tan V.
        • Soto-Calderon H.
        • Beraun M.
        • Brandimarto J.A.
        • Trieu L.
        • et al.
        Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction.
        Circ Res. 2017; 120: 1151-1161
        • Hirai D.M.
        • Zelt J.T.
        • Jones J.H.
        • Castanhas L.G.
        • Bentley R.F.
        • Earle W.
        • et al.
        Dietary nitrate supplementation and exercise tolerance in patients with heart failure with preserved ejection fraction.
        Am J Physiol Regul Integr Comp Physiol. 2017; 312: R13-R22
        • Kerley C.P.
        • O'Neill J.O.
        • Reddy Bijjam V.
        • Blaine C.
        • James P.E.
        • Cormican L.
        Dietary nitrate increases exercise tolerance in patients with non-ischemic, dilated cardiomyopathy-a double-blind, randomized, placebo-controlled, crossover trial.
        J Heart Lung Transplant. 2016; 35: 922-926
        • Bailey S.J.
        • Fulford J.
        • Vanhatalo A.
        • Winyard P.G.
        • Blackwell J.R.
        • DiMenna F.J.
        • et al.
        Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans.
        J Appl Physiol. 2010; 109: 135-148
        • Pawlak-Chaouch M.
        • Boissière J.
        • Gamelin F.X.
        • Cuvelier G.
        • Berthoin S.
        • Aucouturier J.
        Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: a systematic review and a meta-analysis.
        Nitric Oxide. 2016; 53: 65-76
        • Lundberg J.O.
        • Weitzberg E.
        • Lundberg J.M.
        • Alving K.
        Intragastic nitric oxide production in humans: measurements in expelled air.
        Gut. 1994; 35: 1543-1546
        • Govoni M.
        • Jansson E.A.
        • Weitzberg E.
        • Lundberg J.O.
        The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash.
        Nitric Oxide. 2008; 19: 333-337
        • Olin A.C.
        • Aldenbratt A.
        • Ekman A.
        • Ljungkvist G.
        • Jungersten L.
        • Alving K.
        • et al.
        Increased nitric oxide in exhaled air after intake of a nitrate-rich meal.
        Respir Med. 2001; 95: 153-158
        • Borg G.A.
        Psychophysical bases of perceived exertion.
        Med Sci Sports Exerc. 1982; 14: 377-381
        • Working Group on Cardiac Rehabilitation & Exercise Physiology and Working Group on Heart Failure of the European Society of Cardiology
        Recommendations for exercise testing in chronic heart failure patients.
        Eur Heart J. 2001; 22: 37-45
        • Péronnet F.
        • Massicotte D.
        Table of nonprotein respiratory quotient: an update.
        Can J Sport Sci. 1991; 16: 23-29
        • Baba R.
        • Nagashima M.
        • Goto M.
        • Nagano Y.
        • Yokota M.
        • Tauchi N.
        • et al.
        Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise.
        J Am Coll Cardiol. 1996; 28: 1567-1572
        • Beaver W.L.
        • Wasserman K.
        • Whipp B.J.
        A new method for detecting anaerobic threshold by gas exchange.
        J Appl Physiol. 1986; 60: 2020-2027
        • Peterson L.R.
        • Schechtman K.B.
        • Ewald G.A.
        • Geltman E.M.
        • Meyer T.
        • Krekeler P.
        • et al.
        The effect of beta-adrenergic blockers on the prognostic value of peak exercise oxygen uptake in patients with heart failure.
        J Heart Lung Transplant. 2003; 22: 70-77
        • Swank A.N.
        • Horton J.
        • Fleg J.L.
        • Fonarow G.C.
        • Ketayian S.
        • Goldberg L.
        • et al.
        Modest increase in VO2peak is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training.
        Circ Heart Fail. 2012; 5: 579-585
        • Dayi S.U.
        • Akbulut T.
        • Akgoz H.
        • Terzi S.
        • Sayar N.
        • Aydin A.
        • et al.
        Long-term combined therapy with losartan and an angiotensin-converting enzyme inhibitor improves functional capacity in patients with left ventricular dysfunction.
        Acta Cardiol. 2005; 60: 373-37758
        • Ellis G.R.
        • Nightingale A.K.
        • Blackman D.J.
        • Anderson R.A.
        • Mumford C.
        • Timmins G.
        • et al.
        Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative tress.
        Eur J Heart Fail. 2002; 4: 193-199
        • Metra M.
        • Giubbini R.
        • Nodari S.
        • Boldi E.
        • Modena M.G.
        • Dei Cas L.
        Differential effects of beta-blockers in patients with heart failure: a prospective, randomized, double-blind comparison of the long-term effects of metoprolol versus carvedilol.
        Circulation. 2000; 102: 546-551
        • Ismail H.
        • McFarlane J.R.
        • Nojoumian A.H.
        • Dieberg G.
        • Smart N.A.
        Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure.
        JACC Heart Fail. 2013; 1: 514-522
        • Notay K.
        • Incognito A.V.
        • Millar P.J.
        Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study.
        Am J Physiol Heart Circ Physiol. 2017; 313: H59-H65
        • Zamani P.
        • Rawat D.
        • Shiva-Kumar P.
        • Geraci S.
        • Bhuva R.
        • Konda P.
        • et al.
        Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction.
        Circulation. 2015; 131: 371-380
        • Larsen F.J.
        • Schiffer T.A.
        • Borniquel S.
        • Sahlin K.
        • Ekblom B.
        • Lundberg J.O.
        • et al.
        Dietary inorganic nitrate improves mitochondrial efficiency in humans.
        Cell Metab. 2011; 13: 149-159