Background: We could not identify the elapsed time until hospitalization in certain patients
with heart failure (HF). Therefore, we attempted to predict the elapsed time using
mathematical method. To mathematically predict, we sought to solve the equation Y = f(x1 … xp), where Y represents the clinical outcomes and x1 … xp represent clinical factors affecting for HF. Methods: We followed 151 patients (mean age: 68.6 ± 14.6 years) with acute decompensated HF
who were consecutively hospitalized and discharged, and collected clinical factors
using this population. The mathematical analysis was performed through a probabilistic
modeling of the relational data by assuming a Poisson process for re-hospitalization
and by linearly approximating the relationship between the clinical factors and the
mean elapsed time to re-hospitalization. We also performed data mining to know the
factors to discriminate the patients who were re-hospitalized 1) within 6 months and
2) after 2 years or not re-hospitalized. Results: 151 patients were died or readmitted to our hospital at a median time of 296 days
after discharge. We collected 402 clinical factors, and excluded 150 factors having
small effects by the regularization method. Finally, we identified 252 factors affecting
for CHF and estimated the result of attribute coefficients. Conclusions: This study demonstrated that clinical medicine and practice can use a mathematical
formula to predict clinical outcomes or events using current data.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Cardiac FailureAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect