Advertisement
Abstract| Volume 23, ISSUE 10, SUPPLEMENT , S41, October 2017

Calmodulin, Which Dissociated from Cardiac Ryanodine Receptor, Plays a Pivotal Role in Driving Pathological Cardiac Hypertrophy

      Calmodulin (CaM) binding to cardiac ryanodine receptor (RyR2) (CaM-RyR2) is a critical regulator of SR Ca release. Our recent studies indicated that CaM-RyR2 binding affinity is reduced in pathological conditions. However, the roles of CaM released from RyR2 are unknown. Here, we tested whether RyR2-dissociated CaM play a pivotal role in pathological cardiac hypertrophy. Results: First, we tested whether treatment with angiotensin II (AngII), which stimulates pathologic cardiac hypertrophy, reduced CaM-RyR2 binding and whether CaM moves to nucleus using immunofluorescence. After AngII exposure, there are significant shifts of CaM from RyR2 to nucleus. To further test whether this nuclear CaM accumulation comes from CaM-RyR2, we used dantrolene, which is known to restore the CaM-RyR2 binding affinity, or suramin, which completely deplete CaM from RyR2. Treatment with Dantrolene and AngII dramatically reduced nuclear CaM accumulation vs. AngII alone. On the other hands, suramin significantly increased the nuclear CaM accumulation, suggesting that nuclear CaM accumulation comes from RyR2-CaM. To gain further information about this relation, we measured the kinetics of CaM movement after treatment with AngII. After exposure of AngII, CaM-RyR2 dissociation was faster than nuclear CaM association rate, indicating that CaM-RyR2 dissociation was the trigger for nuclear CaM translocation. Conclusions: Nuclear accumulation of CaM, which came from RyR2-dissociated CaM, may be an important step in driving pathological cardiac hypertrophy.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect