Clinical Investigation| Volume 11, ISSUE 7, P504-509, September 2005

Download started.


Circulating Levels of Myocardial Proteins Predict Future Deterioration of Congestive Heart Failure



      This study was designed to test whether circulating levels of myocardium-specific proteins serve as useful markers for the prognosis of patients with congestive heart failure.

      Methods and Results

      Seventy-eight patients with congestive heart failure from dilated cardiomyopathy but in a stable condition were enrolled, and their blood was sampled for measurements of myosin light chain-I (MLC-I), troponin T (TnT), heart fatty-acid-binding protein (H-FABP), and creatine kinase isoenzyme MB (CK-MB). The patients were then followed up for 951 ± 68 days, with the endpoint being acute deterioration. A univariate analysis revealed that MLC-I, TnT, H-FABP, and CK-MB were significant predictors for acute deterioration of heart failure. Application of the Kaplan-Meier method using cutoff values determined by analysis of receiver operating characteristics curves demonstrated that the incidence of acute deterioration was significantly higher in patients with higher values of MLC-I (61.9%), TnT (52.4%), H-FABP (50.0%), or CK-MB (38.6%) than in those with lower values of these markers (15.8%, 20.4%, 13.6%, and 16.1%, respectively).


      Increased circulating levels of the specific myocardial proteins are related to a higher probability of future acute deterioration of congestive heart failure in patients in a stable condition associated with dilated cardiomyopathy.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Cardiac Failure
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Cleland J.G.
        • Swedberg K.
        • Poole-Wilson P.A.
        Successes and failures of current treatment of heart failure.
        Lancet. 1998; 352: SI19-SI28
        • Ho K.K.
        • Anderson K.M.
        • Kannel W.B.
        • Grossman W.
        • Levy D.
        Survival after the onset of congestive heart failure in Framingham Heart Study subjects.
        Circulation. 1993; 88: 107-115
        • Francis G.S.
        • Cohn J.N.
        • Johnson G.
        • Rector T.S.
        • Goldman S.
        • Simon A.
        Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group.
        Circulation. 1993; 87: VI40-VI48
        • Schrier R.W.
        • Abraham W.T.
        Hormones and hemodynamics in heart failure.
        N Engl J Med. 1999; 341: 577-585
        • Willenbrock R.
        • Philipp S.
        • Mitrovic V.
        • Dietz R.
        Neurohumoral blockade in CHF management.
        J Renin Angiotensin Aldosterone Syst. 2000; 1: 24-30
        • Cohn J.N.
        • Levine T.B.
        • Francis G.S.
        • Goldsmith S.
        Neurohumoral control mechanisms in congestive heart failure.
        Am Heart J. 1981; 102: 509-514
        • Dzau V.J.
        Contributions of neuroendocrine and local autocrine-paracrine mechanisms to the pathophysiology and pharmacology of congestive heart failure.
        Am J Cardiol. 1988; 62: 76E-81E
        • Riegger A.J.
        Hormones in heart failure—regulation and counterregulation.
        Eur Heart J. 1991; 12: 190-192
        • Colucci W.S.
        Molecular and cellular mechanisms of myocardial failure.
        Am J Cardiol. 1997; 80: 15L-25L
        • Cohn J.N.
        Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition.
        Circulation. 1995; 91: 2504-2507
        • Ishii J.
        • Nomura M.
        • Nakamura Y.
        • Naruse H.
        • Mori Y.
        • Ishikawa T.
        • et al.
        Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure.
        Am J Cardiol. 2002; 89: 691-695
        • Hansen M.S.
        • Stanton E.B.
        • Gawad Y.
        • Packer M.
        • Pitt B.
        • Swedberg K.
        • et al.
        Relation of circulating cardiac myosin light chain 1 isoform in stable severe congestive heart failure to survival and treatment with flosequinan.
        Am J Cardiol. 2002; 90: 969-973
        • Del Carlo C.H.
        • Pereira-Barretto A.C.
        • Cassaro-Strunz C.
        • Latorre Mdo R.
        • Ramires J.A.
        Serial measure of cardiac troponin T levels for prediction of clinical events in decompensated heart failure.
        J Card Fail. 2004; 10: 43-48
        • Setsuta K.
        • Seino Y.
        • Ogawa T.
        • Arao M.
        • Miyatake Y.
        • Takano T.
        Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure.
        Am J Med. 2002; 113: 717-722
        • Goto T.
        • Takase H.
        • Toriyama T.
        • Sugiura T.
        • Sato K.
        • Ueda R.
        • et al.
        Circulating levels of cardiac proteins indicate severity of congestive heart failure.
        Heart. 2003; 89: 1303-1307
        • Mukoyama M.
        • Nakao K.
        • Hosoda K.
        • Suga S.
        • Saito Y.
        • Ogawa Y.
        • et al.
        Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide.
        J Clin Invest. 1991; 87: 1402-1412
        • McDonagh T.A.
        • Cunningham A.D.
        • Morrison C.E.
        • McMurray J.J.
        • Ford I.
        • Morton J.J.
        • et al.
        Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population.
        Heart. 2001; 86: 21-26
        • Tsutamoto T.
        • Wada A.
        • Maeda K.
        • Hisanaga T.
        • Mabuchi N.
        • Hayashi M.
        • et al.
        Plasma brain natriuretic peptide level as a biochemical marker of morbidity and mortality in patients with asymptomatic or minimally symptomatic left ventricular dysfunction. Comparison with plasma angiotensin II and endothelin-1.
        Eur Heart J. 1999; 20: 1799-1807
        • Koglin J.
        • Pehlivanli S.
        • Schwaiblmair M.
        • Vogeser M.
        • Cremer P.
        • vonScheidt W.
        Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure.
        J Am Coll Cardiol. 2001; 38: 1934-1941
        • Wei C.M.
        • Heublein D.M.
        • Perrella M.A.
        • Lerman A.
        • Rodeheffer R.J.
        • McGregor C.G.
        • et al.
        Natriuretic peptide system in human heart failure.
        Circulation. 1993; 88: 1004-1009
        • Schaper J.
        • Froede R.
        • Hein S.
        • Buck A.
        • Hashizume H.
        • Speiser B.
        • et al.
        Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy.
        Circulation. 1991; 83: 504-514
        • Beltrami C.A.
        • Finato N.
        • Rocco M.
        • Feruglio G.A.
        • Puricelli C.
        • Cigola E.
        • et al.
        Structural basis of end-stage failure in ischemic cardiomyopathy in humans.
        Circulation. 1994; 89: 151-163
        • Davies C.H.
        • Harding S.E.
        • Poole-Wilson P.A.
        Cellular mechanisms of contractile dysfunction in human heart failure.
        Eur Heart J. 1996; 17: 189-198
        • Gaballa M.A.
        • Goldman S.
        Ventricular remodeling in heart failure.
        J Card Fail. 2002; 8: S476-S485
        • Jiang L.
        • Huang Y.
        • Hunyor S.
        • dos Remedios C.G.
        Cardiomyocyte apoptosis is associated with increased wall stress in chronic failing left ventricle.
        Eur Heart J. 2003; 24: 742-751
        • Haider N.
        • Narula N.
        • Narula J.
        Apoptosis in heart failure represents programmed cell survival, not death, of cardiomyocytes and likelihood of reverse remodeling.
        J Card Fail. 2002; 8: S512-S517
        • Givertz M.M.
        • Colucci W.S.
        New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress.
        Lancet. 1998; 352: SI34-SI38
        • Cristina Polidori M.
        • Pratico D.
        • Savino K.
        • Rokach J.
        • Stahl W.
        • Mecocci P.
        Increased F2 isoprostane plasma levels in patients with congestive heart failure are correlated with antioxidant status and disease severity.
        J Card Fail. 2004; 10: 334-338
        • Nonaka-Sarukawa M.
        • Yamamoto K.
        • Aoki H.
        • Takano H.
        • Katsuki T.
        • Ikeda U.
        • et al.
        Increased urinary 15-F2t-isoprostane concentrations in patients with non-ischaemic congestive heart failure: a marker of oxidative stress.
        Heart. 2003; 89: 871-874
        • Francis G.S.
        • Tang W.H.
        Pathophysiology of congestive heart failure.
        Rev Cardiovasc Med. 2003; 4: S14-S20